The new Roslyn Viaduct Bridge on Route 25A over Hempstead Harbor, Long Island, N.Y., provides a wider, aesthetically pleasing and effective design that replaces a deteriorating 1949 steel bridge that could not handle the growing traffic volume. The new segmental precast concrete structure, featuring haunched box girders, provides a 75-year service life, minimizes impact to the public and its surroundings, and complements the area’s many historical structures and characteristics. It also represents the first bridge of this type on Long Island.

The $127-million project is a key east-west roadway in Nassau County, carrying 38,000 vehicles each day. Significant challenges arose in designing the best alternative, as a replacement structure required demolishing the existing bridge while maintaining traffic flow. Rehabilitation was considered, but officials agreed that replacement was preferred, as the structure was an aging non-redundant two-girder structure with pin and hanger construction.

Haunched box girders made with high-performance concrete provides strong aesthetics and long service life for Long Island replacement bridge
To protect the waterway near the site, precast concrete segments were barged from the precaster’s plant in Cape Charles, Va., to a location several miles from the project and then hauled by specialized trailers to the site. Photo: Will Brown.

Community Involved
As part of the development process, the New York State Department of Transportation (NYSDOT) undertook a partnering initiative with the community to ensure that the bridge was constructed in context with its surroundings and in keeping with the local vision for future needs. To ensure the process moved smoothly, a Bridge Task Force (BTF) was created, comprising public officials and their appointed representatives. Designers presented several concepts, including a cable-stayed design, a deck-arch bridge, a multigirder structure (of either steel or concrete), a box-girder bridge (of either steel or concrete), and a tunnel.

After considering the options and receiving local input, the BTF chose a segmental concrete bridge with haunched box girders, which could be designed to resemble the contours of the existing bridge. Key considerations were that this approach would limit dust and noise at the site, with most superstructure and column components fabricated off-site, as well as reduce construction time; thereby minimizing the amount of traffic impacted by the construction.

The nine-span bridge is 78.2 ft wide with two 11.8-ft-wide travel lanes and 7.9-ft-wide shoulders in each direction with a concrete median barrier. The bridge provides a pedestrian walkway on one side and widens to 84.2 ft at the east end to provide transitions for entrance and exit ramps. The nine spans vary in length, becoming shorter as they approach the ends to leave the center of the bridge more open. The lengths of the spans from west to east are 152.6, 252.6, 272.3, 292.0, 272.3, 272.3, 265.7, 215.4, and 120.9 ft. The cross section of the bridge consists of two single-cell box girders.

The bridge contains no horizontal curvature and only a slight vertical curve to the east end with gradient increases from east to west. It was designed to meet the existing approach roadways with an increase in elevation at the west end. Since the approaches could be raised only marginally to meet existing grades, the haunched box girders provided a workable solution.

Designers also chose 10,200 psi (70 MPa) high-performance, self-consolidating concrete for the girders and abutments to ensure a 75-year service life for the structure. The abutments were designed to contain interior hollow sections to store equipment needed to maintain the bridge and provide access to the interior for inspection and maintenance activities. Each abutment also includes two hydraulic dampers to address seismic concerns.

Design Addresses Key Challenges
A key challenge focused on the soil conditions at the site, which were of varying compositions, with layers of organic material at some strata levels. There also is high groundwater that had to be considered in the design. Drilled and grouted micropiles were used to transfer the high dead loads into the ground. Drilling the piles rather than driving them also minimized vibration to nearby historic buildings and structures and to several 100-year-old wells in close proximity. Vibration monitoring was provided throughout the site.

PRECAST CONCRETE HAUNCHED BOX-GIRDER BRIDGE / NEW YORK STATE DEPARTMENT OF TRANSPORTATION, OWNER
POST-TENSIONING CONTRACTOR: Freyssinet LLC, Sterling, Va.
GANTRY CRANE SUPPLIER: DEAL, Italy
TENDON GROUT SUPPLIER: Sika Corporation, Lyndhurst, N.J.
BRIDGE DESCRIPTION: Nine-span haunched segmental box-girder bridge with precast segments for the superstructure and columns
BRIDGE CONSTRUCTION COST: $127.4 million

Self-consolidating, high-performance, 10,200 psi concrete was used for girders and abutments to ensure a 75-year service life.
Another significant challenge arose with transporting the precast concrete segments to the site. The largest segments weighed close to 100 tons. Initially, the construction team planned to use the channel waterway, but the NYS Department of Environmental Conservation was concerned about protecting the aquatic natural habitat. Instead, the segments were barged from the precaster's plant in Cape Charles, Va., to a location several miles from the project and then hauled by specialized trailers to the site via ground-surface transportation routes. This approach required numerous contacts and discussions with local public agencies, residents and other stakeholders. The contractor obtained permits to use special multi-axle trailers to transport many of the bridge segments over the existing viaduct bridge.

Demolition of the existing bridge and construction of the new structure were coordinated to minimize traffic disruptions and required construction in two stages. Demolition of the northern third of the bridge came first. Then, new pier-column segments were installed and girder segments for the portion of the bridge east of the waterway erected. The column segments and many of the girder segments for the portion west of the waterway were transported over the existing viaduct during nighttime operations while the bridge was closed to traffic.

After the northern portion of the original bridge was demolished, NYSDOT used three travel lanes on the remaining southern portion, with the center lane accommodating traffic in peak periods by alternating flow direction. The traffic switches took place three times per day using three sets of lane-use signals. Two westbound lanes were used in the morning and early afternoon. Two eastbound lanes were used in the late afternoon and evening. One lane in each direction was used overnight. To prevent traffic backups, a manned tow truck was available at all times, and the bridge was monitored remotely with multiple cameras.

The majority of the precast concrete girder segments for the northern portion of the bridge were installed using a 700-ft-long gantry built on the site away from locations where it would impact travel. The northern approach roadways were completed first, in the fall of 2008. Once the northern half of the new bridge was finished, traffic switched to this new structure and the gantry shifted to the south to facilitate demolition of the southern portion of the existing structure. Construction on that portion then commenced. Self-consolidating concrete was used for cast-in-place closure placements, using a similar concrete mix to the one used for the column and girder segments.

The designed combination of HPC with a 2-in.-thick silica fume concrete overlay will produce a highly durable bridge able to withstand 75 years of New York weather and de-icing salts. Several components were further designed to withstand the test of time with the use of stainless steel reinforcing bars. These components included light-pole pilasters, barrier walls, and closure placements. Stainless steel also was used for anchors and supports for the bridge's electrical components, as well as for the access doors, ladders, and platforms within the bridge columns.

The resulting bridge will provide a strong addition to the community. The haunched superstructure and long spans provide local residents and businesses with a more open view of the harbor, with the total number of piers reduced from 13 to 8. To blend into the surroundings, pier columns and faux columns at the abutments feature a ship-lap pattern in the concrete, while a New England dry-stack form liner along with the ship-lap pattern were used for the abutments and wing walls. This attention to detail ensures that residents will find their new bridge to be both functional and aesthetically pleasing for many decades to come.

The information in this article was compiled by Eileen Peters, the public information officer for the New York State Department of Transportation, Region 10 in Long Island, N.Y., and was supplied by NYSDOT construction and design personnel who worked on the project.

For more information on this or other projects, visit www.aspirebridge.org.
POSEIDON SECTIONAL BARGES
for RENT or for PURCHASE!

- Stock locations in Indiana, Arkansas, California, Florida & Massachusetts
- Dealer: Blue Water Marine, Inc Seattle WA
- Truckable for quick easy setup at your job site
- Pin together as many as you need!
- Use in water as shallow as three feet!
- Coated with two-part epoxy paint on the exterior and bio float rust inhibitor on the interior
- Zink anodes applied to reduce corrosion in salt and brackish waters
- Rendrag® compatible connection system
- Flexifloat® compatible connections also

STANDARD STOCK ITEMS

| 40’ x 10’ x 5’ Sections | 20’ x 10’ x 5’ Sections | 10’ x 10’ x 5’ Rakes | 40’, 30’ or 20’ Spuds | Spud Wells | Connector Pins | Deck Cleats | Winch Units | Barge Pushers | Wood Mats |

VISIT OUR WEB SITE FOR MORE INFORMATION AT
www.poseidonbarge.com
info@poseidonbarge.com

Phone: 260-422-8767
Toll Free: 866-992-2743

POSEIDON BARGE CORPORATION
3101 New Haven Ave, Fort Wayne, IN 46803
PH: 260-422-8767 or 866-992-2743
WEB: www.poseidonbarge.com
Floating Construction Equipment since 1995
The Roslyn Viaduct was designed and built as a balanced cantilever bridge. The gantry crane moves segments 4 east and 4 west into position followed by stressing platforms at each end, which allow the workers to accomplish the post-tensioning. Photo: Rich Lorenzen.
After the north side of the bridge was constructed, the gantry crane was shifted to the south to remove the steel frame of the existing bridge. Photo: Rich Lorenzen.

The majority of the precast concrete girder segments for the northern portion of the bridge were installed using a 700-ft-long gantry.

Tapered pier columns create a new visual appeal for the Roslyn Viaduct. The near end will tie into the east abutment. Photo: Rich Lorenzen.
Concrete is placed at the closure pour at pier 7 using a crane and bucket while the gantry is positioned at piers 6 and 7. In the foreground are the pier 8 pier table and the east abutment. Photo: Rich Lorenzen.