SW Line Flyover Bridge, Nalley Valley Interchange

Tacoma, Washington

MON-FAYETTE EXPRESSWAY BRIDGE
Brownsville, Pennsylvania

NORTHEAST 36TH STREET BRIDGE OVER SR 520
Redmond, Washington

BIG BEAR BRIDGE
San Bernardino Mountains at Big Bear Lake, California

DULLES CORRIDOR METRORAIL PROJECT AERIAL GUIDEWAYS
Tysons Corner, Virginia

I-80 BRIDGES OVER ECHO DAM ROAD
Echo, Utah

THE COVERED BRIDGE OVER THE KENNEBEC RIVER
Norridgewock, Maine

SANTA URSULA CONNECTOR
Laredo, Texas
Efficient, Innovative, and Sustainable Concrete Bridges

As part of a design-build team, FIGG works closely with contractors to deliver cost effective, efficient, innovative and sustainable concrete bridges. Focusing on creative solutions and design details early in the process results in quality bridges that can be built quickly and economically.

(top to bottom)

New I-35W Bridge, Minneapolis, Minnesota
504’ main span over the Mississippi River
Owner: Minnesota Department of Transportation
Design-Build Team: Flatiron/Manson with FIGG

Penobscot Narrows Bridge and Observatory,
Waldo/Hancock Counties, Maine
1,161’ cable stayed main span
Owner: Maine Department of Transportation
Owner Facilitated Design-Build:
Cianbro/Reed & Reed (Contractor)
and FIGG (Designer)

Honolulu High-Capacity Transit Corridor
Project, Honolulu, Hawaii
11 mile elevated guideway
Owner: City and County of Honolulu
Design-Build Team: Kiewit with HNTB
and FIGG

FIGG

www.figgbridge.com
1.800.358.3444

Creating Bridges As Art®
CONTENTS

Features

McNary Bergeron & Associates .. 8
Construction-engineering work helps ensure efficient and cost-effective construction.

Mon-Fayette Expressway Bridge .. 14
Value-engineering creates a tall, elegant concrete segmental design for the Pennsylvania Turnpike.

Northeast 36th Street Bridge over SR 520 .. 18
Creating a level playing field—a bridge and a park built over busy freeway.

Big Bear Bridge ... 22
A time to replace—constructing a safer tomorrow.

Dulles Corridor Metrorail Project Aerial Guideways 26
Connecting the nation’s capital with its international airport.

I-80 Bridges over Echo Dam Road .. 30
A sliding scale.

The Covered Bridge over the Kennebec River 34
Re-creating history: modern techniques preserve character of historic bridge.

Santa Ursula Connector .. 38

Departments

Editorial ... 2
Concrete Calendar ... 4
Reader Response .. 6

CCC—ARC Wildlife Crossing .. 12
Aesthetics Commentary .. 37

FHWA—The Office of Federal Lands Highway 42
Safety and Serviceability ... 44

STATE—New York State ... 46
COUNTY—King County, Washington ... 50
Concrete Connections ... 52

Buyers Guide .. 54
AASHTO LRFD—The Fatigue Limit States, Part 2 56

Advertisers Index

Beijing Wowjoint Machinery Co. .. 41
Bentley Systems Inc. ... 3
CABA ... 5
Dywidag-Systems International USA .. 3
FIGG .. 34
Flatiron ... 25
Hamilton Form Company ... 17
Headwaters Resources .. 6
LARSA USA ... 21
Meadow Burke .. 51
Mi-Jack Products .. 49
PB ... 33
PCI ... 7, 29, 45, 53
Poseidon Barge .. Back Cover
Reinforced Earth .. 13
T.Y. Lin International ... Inside Back Cover

Photo: California Department of Transportation.

Photo: McNary Bergeron & Associates Inc.

Photo: Kleinfelder.
Executive Editor
John S. Dick
Managing Technical Editor
Dr. Henry G. Russell
Managing Editor
Craig A. Shutt
Editorial Administration
James O. Altes Inc.
Art Director
Paul Grigonis
Layout Design
Tressa A. Park
Ad Sales
Jim Oestmann
Phone: (847) 838-0500 • Cell: (847) 924-5497
Fax: (847) 838-0555
joestmann@arlpub.com
Reprint Sales
Paul Grigonis
(312) 360-3217
e-mail: pgrigonis@pci.org
Publisher
Precast/Prestressed Concrete Institute
James G. Toscas, President
Editorial Advisory Board
William N. Nickas, Precast/Prestressed Concrete Institute (PCI)
William R. Cox, American Segmental Bridge Institute (ASBI)
Dr. David McDonald, Epoxy Interest Group (EIG)
Dr. Henry G. Russell, Henry G. Russell, Inc.
John S. Dick, J. Dick Precast Concrete Consultant LLC
POSTMASTER
Send address changes to ASPIRE
200 W. Adams St., Suite 2100
Chicago, IL 60606.
Standard postage paid at Chicago, IL, and additional mailing offices.
ASPIRE (Vol. 5, No. 4), ISSN 1935-2093 is published quarterly
by the Precast/Prestressed Concrete Institute
200 W. Adams St., Suite 2100
Chicago, IL 60606.
Copyright 2011, Precast/Prestressed Concrete Institute.
If you have a project to be considered for ASPIRE, send
information to ASPIRE
200 W. Adams St., Suite 2100
Chicago, IL 60606
phone: (312) 786-0300
www.aspirebridge.org
e-mail: info@aspirebridge.org
Cover
SW Line Flyover Bridge, Nalley Valley Interchange, Tacma, Washington
Photo: Guy F. Atkinson Construction LLC.

EDITORIAL

Challenges, Engineers, and Solutions
John S. Dick, Executive Editor

As we review projects for potential use in ASPIRE, the editorial team can’t help but be impressed with how engineers respond to the challenges of envisioning and designing their bridges. This extends to the contractors who execute the designs and the agencies that approve and ultimately accept them. The results are frequently awe-inspiring.

Size doesn’t matter: miles of spans or just one, short-spans or long-spans, two lanes or six lanes. We see impressive solutions being used in most bridges around the country these days. The projects described in this issue are no exception.

The Mon-Fayette Expressway Bridge in Pennsylvania saved the owner $8.5 million with a value-engineering proposal. Sitting on piers up to 200 ft tall, the cast-in-place concrete box girder includes a span of 518 ft. Low-permeability concrete and other measures provide a life expectancy of 100 years. This article begins on page 14.

In Washington State, a unique lid over an expressway connects both parts of a major office complex. It not only provides a vehicular bridge but carries the adjacent landscaping over the freeway with pedestrian-friendly meandering walkways that blend seamlessly into the surrounding environment. Read the article beginning on page 18.

Big Bear Bridge in California comprises a 474-ft-long arch supporting two 237-ft-long equal spans of post-tensioned, cast-in-place concrete box girders. This striking bridge, located near the south branch of the San Andreas Fault, is designed to resist a significant seismic event in part with the use of two 6.5-ft-diameter friction pendulum isolation bearings at the crest of the arch. This feature begins on page 22.

The Dulles Metrorail Aerial Guideway project near the nation’s capital is being constructed just feet away from some of the country’s heaviest traffic. The first phase of the project is 11.6 miles long, includes 3 miles of aerial guideway, 3 aerial stations, and a 2400-ft-long tunnel. At its highest point, it is 55 ft over the eight-lane I-495 Capital Beltway. (See page 26)

The Covered Bridge over the Kennebec River in Norridgewock, Me., hasn’t been “covered” in many years. The story behind the challenge to create this beautiful structure, only the second major concrete tied arch bridge in the United States, is impressive. The arch spans 300 ft and rises 60 ft above the deck. With a total length of 570-ft, the bridge has no deck joints and incorporates measures that will provide a 100-year service life. The article starts on page 34.

So far, the articles alternate between the east and west coasts. The final featured project is in Texas. The Santa Ursula Connector in Laredo needed to be designed for the condition of being 25 ft below high water level of the Rio Grande River. That required a shallow superstructure and substantial resistance to overturning. The selection of the Texas standard 15-in.-deep, precast, prestressed concrete solid slabs seemed logical. It provided a 22-in.-deep superstructure with a smooth soffit that won’t trap debris. But, it was on a sharp horizontal curve. How the designers handled all of the constraints begins on page 38.

Once again, we salute the innovative designers and constructors who have met their challenges head-on. They have provided bridges that not only satisfy the unique site demands but create interesting stories that we are pleased to share in ASPIRE. If you have a project that you would like to have considered, whether large or small, please contact us at www.aspirebridge.org and select “Contact Us.” We look forward to hearing from you.

Log on NOW at www.aspirebridge.org and take the ASPIRE Reader Survey.
Bridge Information Modeling – It’s everything to do with the bridge.

Bridge Information Modeling (BrIM) is a compelling new methodology for project delivery that dramatically improves bridge quality and reduces risk. Using the Bentley bridge solution for BrIM, engineers develop and employ an unprecedented depth of information about the bridge as they streamline the entire bridge development process, design through construction engineering.

Join the world’s top engineering consultancies. Choose the Bentley bridge solution for BrIM – and the satisfaction of delivering safe, sustainable bridges on time and on budget.

Only Bentley can take you there. www.bentley.com/ASPIRE

©2010 Bentley Systems, Incorporated. Bentley, the “B” Bentley logo, and LEAP are either registered or unregistered trademarks or service marks of Bentley Systems, Incorporated or one of its direct or indirect wholly-owned subsidiaries. Other brands and product names are trademarks of their respective owners.
CONTRIBUTING AUTHORS

M. Myint Lwin is director of the FHWA Office of Bridge Technology in Washington, D.C. He is responsible for the National Highway Bridge Program direction, policy, and guidance, including bridge technology development, deployment and education, and the National Bridge Inventory and Inspection Standards.

Dr. Dennis R. Mertz is professor of civil engineering at the University of Delaware. Formerly with Modjeski and Masters Inc. when the LRFD Specifications were first written, he has continued to be actively involved in their development.

Frederick Gottemoeller is an engineer and architect, who specializes in the aesthetic aspects of bridges and highways. He is the author of Bridgescape, a reference book on aesthetics and was deputy administrator of the Maryland State Highway Administration.

MANAGING TECHNICAL EDITOR

Dr. Henry G. Russell is an engineering consultant, who has been involved with the applications of concrete in bridges for over 35 years and has published many papers on the applications of high-performance concrete.

CONCRETE CALENDAR 2011/2012

For links to websites, email addresses, or telephone numbers for these events, go to www.aspirebridge.org and select “EVENTS.”

October 22-25, 2011
PCI Annual Convention and Exhibition and National Bridge Conference
Salt Lake City Marriott Downtown and Salt Palace Convention Center
Salt Lake City, Utah

February 16-18, 2012
4th International Conference on Grouting and Deep Mixing
Sponsored by the International Conference Organization for Grouting and the Deep Foundations Institute
Marriott New Orleans
New Orleans, La.

October 31–November 4, 2011
National Bridge Management, Inspection, and Preservation Conference
Millennium Hotel — Downtown
St. Louis, Mo.

March 18-22, 2012
ACI Spring Convention
Hyatt Regency Dallas
Dallas, Tex.

November 1-3, 2011
Concrete and Concrete Repair School
Sponsored by the United States Department of Interior—Bureau of Reclamation
Registration Deadline is October 14, 2011. Limited to 30 participants.
Denver Federal Center
Denver, Colo.

April 16-17, 2012
ASBI 2012 Grouting Certification Training
J.J. Pickle Research Campus
The Commons Center
Austin, Tex.

November 7-8, 2011
ASBI 23rd Annual Convention
Washington Marriott Wardman Park
Washington, D.C.

May 20-25, 2012
14th International Conference on Alkali-Aggregate Reactions in Concrete
Hyatt Regency Austin
Austin, Tex.

November 14-19, 2011
PCI Quality Control & Assurance Schools, Levels I, II & III
Embassy Suites Nashville Airport Hotel
Nashville, Tenn.

June 10-13, 2012
International Bridge Conference
David L. Lawrence Convention Center
Pittsburgh, Pa.

January 22-26, 2012
91st Annual Meeting
Transportation Research Board
Marriott Wardman Park, Omni Shoreham, and Hilton Washington
Washington, D.C.

July 7-12, 2012
2012 AASHTO Subcommittee on Bridges and Structures Meeting
Hyatt Regency
Austin, Tex.

January 23-27, 2012
World of Concrete 2012
Las Vegas Convention Center
Las Vegas, Nev.

July 23–27, 2012 (Tentative)
2012 PCA Professors’ Workshop
Skokie, Ill.

January 29-October 3, 2012
PCI Annual Convention and Exhibition and National Bridge Conference
Gaylord Opryland Resort & Convention Center
Nashville, Tenn.

CONTRIBUTING AUTHORS

For links to websites, email addresses, or telephone numbers for these events, go to www.aspirebridge.org and select “EVENTS.”

Photo: Ted Lacey Photography.
Prestressed Concrete Bridges

Photo of Route 70 over Manasquan River in New Jersey (Photo courtesy Akora Associates)

Alternate structure design utilizes precast caissons, piers, pier caps, and prestressed beams and was opened to traffic two years ahead of as-designed schedule.

An optimum solution to benefit:

- **The Public** - Aesthetic, durable, and safe
- **The Owners** - Low maintenance and life cycle costs
- **The Designers** - Well established standards - simple to design
- **The Contractors** - Familiar material - fast to construct
- **The Environment** - Low energy content and sustainable solution

Certified plants at your service in the Central Atlantic Region

Bayshore Concrete Products
1134 Bayshore Road
Cape Charles, VA 23310
Phone: (757) 331-2300
Fax: (757) 331-2501
www.usadivi.skanska.com
Email: Chad.Saunders@skanska.com

Northeast Prestressed Products, LLC
121 River Street
Cressona, PA 17929-1133
Phone: 570-385-2352
Fax: 570-385-5988
www.nppbeams.com
Email: info@nppbeams.com

Jersey Precast Corporation
633 Nottingham Way
Hamilton Township, NJ 08619
Phone: 609-689-3700
Fax: 609-689-3797
www.jerseyprecast.com
Email: jrpprecast@aol.com

Newcrete Products, Inc.
P.O. Box 34
301 Plum Creek Road
Roaring Spring, PA 16673-0034
Phone: 814-224-2121
www.newcrete.com
Email: ggorman@nesl.com

Central Atlantic Bridge Associates
1042 North Thirty Eighth Street • Allentown, PA 18104
Telephone: (610) 395-2338
Reader Response

Editor,

We at T.Y. Lin International thank you for including the Stewart Street Bridge, Cypress Avenue Bridge and the article on architectural lighting in the Summer 2011 issue. We have received many communications from colleagues and partners around the country who appreciated the information that ASPIRE™ presented on these projects. The two common comments focused on how the projects are the appropriate scale for the majority of the bridge work in the United States and that aesthetically pleasing structures can be built even with limited budgets.

The staff at ASPIRE, which is dedicated to concrete bridges, should be proud to know that some of the comments were from roadway professionals! This speaks volumes to the diverse readership both geographically and within the vast engineering community in the U.S.

Thank you again for including T.Y. Lin International’s projects in ASPIRE.

Michael Fitzpatrick
Associate Vice President
T.Y. Lin International
San Francisco, Calif.

Editor,

Thank you for such a beautiful presentation on our project [SR 519 Intermodal Access Project, ASPIRE Summer 2011].

Alexandra Spencer
AECOM
Los Angeles, Calif.

Editor,

Just saw the Summer Edition on-line and you did a wonderful job of presentation [Stewart Street Bridge, ASPIRE Summer 2011]. Thanks for the article; nice to see the final result! Fred’s [Gottemoeller] comments [Aesthetic Commentary] very well represent what we were after as well!

Michael (Mike) A. Avellano
Vice-President
Woolpert
Atlanta, Ga.

Editor,

I wanted to take the time to compliment you and your staff at ASPIRE. I very much enjoy reading ASPIRE. The feature articles are always well chosen, and the quality of the entire publication is excellent. It has been said that the difficult task in creating interesting and informative technical writing is to convey your message as briefly as possible and then allow your readers to do their own further fact finding as needed. Your featured topics are succinctly presented and cover a broad spectrum of bridge engineering and construction.

Keep up the great work. I look forward to receiving the next issue.

William J. Cichanski
Consultant
Tacoma, Wash.

Editor's Note

Additional copies of ASPIRE may be purchased for a nominal price by writing to the Editor through “Contact Us” at the ASPIRE website, www.aspirebridge.org. A free subscription can be arranged there using the “Subscribe” tab.
PCI Convention and National Bridge Conference
September 29–October 3, 2012
Gaylord Opryland, Nashville, Tennessee

PCI is accepting abstracts for technical papers to be presented at the 2012 PCI Convention and National Bridge Conference in Nashville, Tennessee. Abstracts and papers will be peer-reviewed and accepted papers will be published in the conference proceedings.

The PCI Convention and National Bridge Conference is the premier national venue for the exchange of ideas and state-of-the-art information on precast concrete design, fabrication, and construction. The event attracts an average of 1,000 participants each year and provides an outstanding opportunity for networking, education, and sharing of ideas. Don’t miss out on this excellent opportunity to share your knowledge—submit your abstract today!

Submission Requirements
Abstracts should be submitted electronically. Visit wwwpci.org and click on the Call for Papers button to access the submission site.

The 2012 Call for Papers submission site will open November 14, 2011.

Contact:
Transportation: William Nickas, wnickas@pci.org
Buildings: Brian Miller, bmiller@pci.org
Contractors usually call on McNary Bergeron & Associates only when the going gets tough—and that's just the way the company's engineers like it. The firm specializes in taking complex designs and making them more constructible, ensuring the owner and designer's vision becomes reality. That has led the 8-year-old company into some high-profile and extremely challenging concrete projects.

“We usually get involved in projects that are complex,” says Scott McNary, a principal in the Broomfield, Colo.-based construction engineering firm. “We work on the problem children, the projects that are difficult to build. And we enjoy those challenges.” The company’s goal is simple, adds Principal Jim Bergeron, who heads the firm’s other office in Old Saybrook, Conn. “Our niche is to help contractors and designers be successful.

We can bridge the gap between design and construction because we speak both languages.”

The firm was founded in 2003 by McNary and Bergeron along with Jeremy Johannesen. All three had experience with large engineering firms prior to partnering. “We wanted to get back to our roots of working directly with contractors to help them with the construction of complex bridges,” Bergeron says. Since easily designed projects seldom need construction engineering support, the engineers usually are working on complex projects. Those often involve concrete construction—or ones that become concrete during the value-engineering process, says Johannesen.

“We do some designing, especially when value engineering is required,” he says. “But 90% of our work is construction engineering of existing designs to make them more efficient to build.”

Fast Start with Hoover Dam

Most commissions result from relationships with designers or contractors with whom the partners have worked on past projects, McNary explains. Those connections helped them become part of a high-profile project shortly after the firm was created: The Hoover Dam Bypass Colorado River Bridge in Nevada and Arizona.

The company provided construction engineering services for the cast-in-place arch structure and the temporary stay-cable system used to support it. That work included design of the anchorages, towers, and cable construction for the arch ribs as well as the rib shop drawings and an independent review of the form-traveler design.

“There were many challenges involved in bringing that design to fruition,” says Johannesen. “We basically worked with the contractor to create a tower and anchorage system that would streamline the concrete construction. The end result worked extremely well.”

The company’s expertise in arch work paid off when it became involved in the Covered Bridge over the Kennebec River in Norridgewock, Maine, which has just been completed. The project features a cast-in-place concrete tied arch spanning 300 ft. McNary Bergeron provided construction analysis for the new arch and erection plans and procedures, as well as design of the temporary arch shoring and a demolition plan for the existing arches. (See the article on this bridge on page 34.)
“There is nothing similar to this in Maine, or even in most of the country,” says Bergeron. “It’s a complicated arch structure, but it’s very distinctive and memorable.”

Contractor Modifications
Much of the work the firm does falls under the heading of “contractor modifications,” which it performs for most of its projects, rather than value engineering, which it does less frequently, McNary explains. Construction modifications leave the structural engineering as it is, with only some aspects changing. For value-engineering work, the firm changes the shape or materials being used, making substantial alterations to better suit the contractor’s needs and expertise.

An example of construction modifications can be seen in the Route 36 Highlands Bridge over the Shrewsbury River in Monmouth County, N.J. The new design, which replaced a worn-out 1932 structure, was designed as a two-span fixed, four-lane, precast concrete segmental box structure with a 65-ft clearance (raising the previous clearance by 30 ft).

McNary Bergeron helped design the precast concrete cofferdams and support systems for the footing construction and provided integrated shop drawings for precast concrete column and superstructure segments. It also developed and designed the falsework, cantilever-stability system, lifting assemblies, and rigging. All of the components were barged to the site because land access was difficult.

“The key to the project was speed of construction,” explains Bergeron. Each of the twin bridges had to be erected in a construction season. The total-prefabricated concrete design allowed portions to be cast in advance and floated to the site for erection. Aesthetics also played a role in the structure type, he notes. “It’s a very visible structure, so aesthetics were especially important to the owners.”

The firm currently is working on the design for a similar project, the Veterans Memorial Bridge Replacement in Portland, Maine, as part of a design-build team. McNary Bergeron created the constructability review of the twin-bridge superstructure, providing recommendations on segment layout, post-tensioning details, fabrication and erection efficiencies, and alternative erection procedures. The bridge features span lengths up to 250 ft, with precast units by the same precaster used on the Route 36 Highlands Bridge. The bridge was designed to replicate some of the Route 36 bridge plans, allowing the precaster to reuse the forms, thereby saving costs.

“There are often many ways to construct a bridge, and we always steer the design to favor repetition of components to take full advantage of precast concrete’s capabilities,” says McNary. “These ideas help the contractor be more efficient, which saves money.”

Value-Engineering Work
Value-engineering projects include the Nalley Valley Interchange on I-5 through Tacoma, Wash. “We assisted the contractor in procuring the contract by redesigning two expensive steel bridges to more economical concrete structures,” says Johannesen. As part of that, the SW Line Bridge was redesigned from a steel tub-girder bridge to a precast concrete segmental girder design.

“The alignment was well suited to the precast segmental design, so we maintained the alignment but designed the bridge for concrete. We created the basic configuration that best suited the contractor and the precaster for casting and handling the components the whole way through the project.” The change also suited the owner because of the extended design life and reduced maintenance.

Projects in Aspire
Projects in which McNary Bergeron participated were featured in the following ASPIRE™ articles, which can be viewed in the Magazine section at www.aspirebridge.org:

- San Francisco-Oakland Bay Bridge (Winter 2007)
- Susquehanna River Bridge (Spring 2007)
- Selmon Expressway (Fall 2007)
- Seattle Sound (Spring 2008)
- Maroon Creek (Spring 2008)
- Washington Bypass N.C. (Fall 2008)
- Folsom Lake Crossing (Winter 2009)
- Crosstown Project (Minn.) (Spring 2009)
- Fulton Road Bridge (Spring 2009)
- Galena Creek Bridge (Winter 2010)
- Hoover Dam Bypass, Colorado River Bridge (Spring 2010)
- Route 36 Highlands Bridge (Summer 2010)
- Nalley Valley Interchange (Summer 2011)
- MIC-Earl Benton Heights Connector (Summer 2011)

A dramatic cast-in-place concrete tied arch with steel cable hangers serves as the key visual element on the Covered Bridge over the Kennebec River in Norridgewock, Maine. The design is the first of its type in the state and in the eastern half of the United States. McNary Bergeron provided construction analysis for the new arch, which spans 300 ft.
The temporary bridge that was to provide access while the new bridge was constructed was value-engineered from a steel design into a precast concrete bulb-tee girder design. "Precasters can cast deck bulb tees with specified camber, so we don’t create haunched buildup construction," McNary explains. “The owners liked this design, because it simplified the construction and provided the image that the ‘temporary’ bridge could last as long as needed.”

A design-build contractor will often have a construction engineer on his team. A key reason is the capability to maximize speed of construction, Johannesen adds. “Speed is more important all the time. Owners are looking at all of the costs and realizing that the faster they can complete the project, the more they can save in labor and user costs. We help that by finding ways to do engineering and fabrication of components ahead of time. The more time spent upfront before getting to the site, the more efficient the process will be.”

“Speed is a key focus, because almost every project is a replacement project that is in high use already,” says Bergeron. “There are few ‘new’ bridges being built. Almost always, we are taking something down to put up a new structure.”

New Techniques Aid Efficiency

The engineers are keeping a close eye on techniques that will help achieve that goal, including the use of self-propelled modular transporters (SPMTs). “There are a number of new pieces of equipment and devices that hold a lot of promise for making it more efficient to construct bridges,” Bergeron says.

Advances are being made especially for handling precast concrete components, agrees Johannesen. “Beams and girders are getting larger as creative ways are found to transport and maneuver them,” he says. “As soon as cranes get bigger, a new girder is designed to take advantage of their capabilities.” Mobile lifting cranes and gantries also are getting more robust, he says.

New equipment will make bridge designs more efficient to build, adds Bergeron. “It always comes down to cost, and if a crane can be used, that’s the way to go. So as cranes get more versatile, they become even more popular. Especially when land access is limited, it’s important to have other ways to access the site, and better equipment is helping to meet tighter schedules and budgets.”

Tendon-grouting with segmental designs has grown in importance, with Speed of construction was a key reason that McNary Bergeron helped create the all-precast concrete design for the Route 36 Highlands Bridge over the Shrewsbury River in Monmouth County, N.J. Each of the twin bridges were cast and erected in a construction season, providing access year round while construction continued.

The Nalley Valley Interchange on I-5 through Tacoma, Wash., represents one of the few value-engineering projects that McNary Bergeron has done. The two bridges were redesigned from steel tub-girders to a precast concrete segmental box-girder design. The change reduced costs while maintaining the original alignment.
new requirements for post-tensioning systems creating more complexities. “The growing use of duct couplers offers a wide-open field for building a better mousetrap,” says Johannesen. The couplers are cast into the concrete during match-casting procedures, and then broken apart so the second coupler can be cast into the next component to ensure an air-tight seal.

Higher compressive strengths that provide longer, lighter concrete spans also offer potential, McNary says. The firm is using more 75-ksi reinforcement in its designs as well as looking closely at “superstrand,” which provides a 7% larger cross-sectional area for use with post-tensioning.

Such technologies and techniques will add new weapons to McNary Bergeron’s arsenal, helping to meet challenges as bridges grow in complexity. “We are advocates for contractors, to ensure bridges are built efficiently and economically,” says McNary. “We can have a big impact on the industry as a whole by working closely with contractors to ensure projects go the way the contractor needs them to go. That can create innovative approaches that others can use.”

For additional photographs or information on this or other projects, visit www.aspirebridge.org and open Current Issue.

Bridges to Prosperity

The founders of McNary Bergeron believe in giving back to their own community and to the world community. They have maximized the use of their own skills while meeting this goal by working with Bridges to Prosperity Inc. The group literally builds bridges between people in underdeveloped countries, via pedestrian suspension bridges. The work helps connect remote areas, making it easier to access food and medical help.

Although mountainous areas provide easy design opportunities for suspension bridges, about half of the organization’s bridges span flat flood plains with no natural features from which to suspend bridges. McNary Bergeron saw an opportunity to help overcome that obstacle in 2005, says Jeremy Johannesen, who serves on the organization’s Advisory Board. Scott McNary also serves on the group’s Executive Board.

“We work with them to design suspension towers so they can get above the water more easily,” Johannesen explains. “When problems arise, we work with the contractors to solve them.” Frequently, that has included personnel from Flatiron Construction, which began volunteering with the group in 2008. The firm sends young engineers to help build these bridges to gain real-life experience.

An example is the La Pintada suspension footbridge over the Rio Copan in Honduras, which was constructed in the spring of 2010. The four communities that lay beyond the river can now safely cross the waterway during high-water season. “The challenge was immense, but the product incredibly rewarding,” Johannesen says. Based on the relationships built during this project, he adds, future Bridges to Prosperity projects in the area may be on the way.
Concrete, an old material cast in a new way, claimed top position in the ARC International Wildlife Crossing Infrastructure Design Competition. Calling for "New Methods, New Materials, New Thinking," the competition presented a mighty challenge to the world's design community: Develop a feasible, buildable, context-sensitive, and compelling design solution for a safe, efficient, cost-effective, and ecologically responsive wildlife crossing structure.

HNTB Engineering with Michael Van Valkenburgh Associates Inc. and Applied Ecological Services Inc. (HNTB+MVVA) responded to the engineering and ecological challenge and won with “hypar-nature”—a hypar (hyperbolic paraboloid) vault. Their design may set the precedent for the next generation of infrastructure that re-connects wildlife habitats bisected by roads.

The “hypar-nature” bridging system consists of precast modules that serve as abutment, beam, and deck—all in one. This single element—created using straight line, commercially available formwork—is the key to cost-effectiveness, speed of construction, and modularity. Two modules are joined at the midspan acting as a three-hinged arch, eliminating the need for a center pier. No on-site concrete work is required. Instead, the hypar modules are optimized for being efficient to transport, erect, combine, and recombine as needed. The same modules, oriented differently, can also incorporate bicycle paths separated from traffic and the wildlife crossing above.*

The five-expert jury, chaired by Charles Waldheim of Harvard University's Graduate School of Design, determined that HNTB+MVVA's proposal "marries well a simple elegance with a brute force. It effectively recasts ordinary materials and methods of construction into a potentially transcendent work of design. . .it could be credibly imagined as a regional infrastructure across the inter‐mountain west." One juror summed up the jury’s collective thoughts, "The winning proposal by HNTB+MVVA is not only eminently possible; it has the capacity to transform what we think of as possible.”

The ARC Competition concluded in January 2011, but the ARC Partnership continues to collaborate in support of wildlife crossing infrastructure for improved landscape connectivity and highway safety (www.arc-competition.com).

* Specifications about “hypar-nature” were drawn directly from HNTB+MVVA's submission.

Angela Kociolek is a research scientist with the Western Transportation Institute at Montana State University in Bozeman, Mont., and is the technology transfer initiative leader for the ARC Partnership.
The Reinforced Earth Company has forty years of experience designing structures and supplying materials to contractors and owners for construction of retaining walls, sound walls and precast concrete arches for use in all types of civil engineering applications.

We have a reputation for engineering excellence, architectural creativity, and an unyielding focus on quality and customer support, which is why we are recognized as the market leader.

Make your next project a success by selecting Reinforced Earth®.
Long, arching spans and tall, slender piers create an elegant concrete segmental bridge across the Monongahela River near Brownsville, Pa. Value-engineering the project from a steel plate-girder design saved $8.5 million while addressing challenges in the planning and construction phases to produce a unique design.

The bridge is part of an extensive expansion to the Mon-Fayette Expressway that supports efforts by the National Road Heritage Park. The project’s goal is to provide relief for Route 40, shifting it from a major transportation artery to more of a local traffic corridor and tourist destination. The bridge accomplishes this by improving access, addressing future capacity requirements and drawing traffic (especially trucks) off Route 40 and onto more modern throughways. The project closes a gap in the system between U.S. Route 119 in Uniontown and PA Route 88 in California, Pa.

Filling the gap required approximately 17 miles of new limited-access highway costing $605 million. The bridge, a major new crossing of the Monongahela River, consists of 12 major sections, with this new structure commonly referred to as Section 51H.

Value-Engineered Savings
The Pennsylvania Turnpike Commission provided the opportunity for an alternate-design concept to the original steel design. That led FIGG to team with Walsh Construction to create a segmental-concrete option that was considerably more efficient. Walsh’s personnel had experience with this design type and were confident of their approach.

In part, that was due to their successful construction of a similar design, also produced by FIGG, for the nearby I-76 Allegheny River Bridge in Cheswick, Pa. (See ASPIRE,™ Spring 2009.) That project consisted of a 2350-ft-long structure with 100-ft-tall piers and featured the first use of balanced cantilever construction in Pennsylvania. That similarity for a recent design and local accessible expertise ensured an effective and efficient project for the new structure.

The impact of tall piers, limited access, and river, road, and railroad crossings on the construction was minimized by using balanced cantilever concrete segmental construction. To maximize savings, pier locations were adjusted to

This rendering of the Monongahela Bridge, still under construction until next spring, shows the sleek design of the superstructure that complements the piers that are up to 200 ft tall. All photos, drawings, and rendering: FIGG.

MON-FAYETTE EXPRESSWAY BRIDGE / BROWNSVILLE, PENNSYLVANIA
CONSTRUCTION MANAGEMENT/CONSTRUCTION INSPECTION: SAI Consulting Engineers, California, Pa.; Finley Engineering Group, Tallahassee, Fla.
PRIME CONTRACTOR: Walsh Construction Co., Canonsburg, Pa.
POST-TENSIONING CONTRACTOR: Schwager Davis Inc., San Jose, Calif.
eliminate two piers and provide a design more efficient for a concrete segmental bridge. The pier closest to the river bank on both sides was retained in its original position to speed the permitting process.

The design concept was bid by the contractor and approved by the Pennsylvania Turnpike Commission before final design drawings were completed. The project proceeded on a fast-track basis, with initial construction of foundations beginning as later drawings were being completed.

The fast-track process required a close relationship between Turnpike officials and the contractor, so they could work quickly through design-review meetings and facilitate reviews. This communication ensured that approvals were received in a timely manner so the contractor could proceed with foundations, piers, and the superstructure as the plans and project site were ready.

The 3022-ft-long bridge features seven spans, with a configuration of 259, 490, 490, 518, 504, 497, and 264 ft. The pier segments consist of 89-ft 4½-in.-wide, dual-cell box girders with a center-web thickness of 2 ft and an outside-web thickness of 1.5 ft. The segment depth varies from 12 ft at midspan to 27 ft 2 in. at the river piers and 26 ft 7 in. at the land piers. The deck has an 11-in. minimum thickness. The bottom slab thickness varies from 3 ft 10 in. at the pier tables to 10 in. at midspan. The dual box design was chosen due to the wide structure, which carries four 12-ft-wide lanes, two 12-ft-wide shoulders, and a 14-ft-wide median.

200-Ft-Tall Piers
The key challenge came in designing the six piers, which range in height from 100 to 200 ft. That significant height required a sleek design that was in keeping with the thin profile of the superstructure, which was minimized further by the tall piers.

The piers were cast with 15-ft-tall jump forms that were advanced upward after each lift of concrete was placed and cured. The specified 28-day concrete compressive strength was 5500 psi. The two piers at the river banks were octagonal in shape with a 50-ft-tall solid concrete base to resist barge impacts, with the remaining 150 ft cast with a hollow center.

The approach piers further away from the river were designed as two, C-shaped, walled structures. They used the octagonal river pier shape split in two. This design aided flexibility and load-sharing via the twin walls and helped to balance the superstructure during construction while maintaining a consistent look to all of the piers.

The bridge is on a tangent alignment, and the deck is cast with cross-slopes to allow for drainage in both directions. Turnpike officials also had concerns with sulfate levels in the soils due to a local mining quarry. To alleviate those concerns, the footing and first lift of Pier 6 and Abutment 2 concrete elements were cast with moderate sulfate-resistant concrete using Type II cement.

The pier design was created to enhance the efficient and sleek appearance of the segmental superstructure. The goal was to eliminate wasted concrete and

CAST-IN-PLACE CONCRETE SEGMENTAL BOX-GIRDER BRIDGE BUILT IN BALANCED CANTILEVER ON CAST-IN-PLACE CONCRETE PIERS / PENNSYLVANIA TURNPIKE COMMISSION, HARRISBURG, PENNSYLVANIA, OWNER

BRIDGE DESCRIPTION: Seven-span, 3200-ft-long, two-cell concrete segmental box-girder bridge with spans of 259, 490, 490, 518, 504, 497, and 264 ft, and with concrete piers 100 to 200 ft tall

STRUCTURAL COMPONENTS: Variable-depth, two-cell cast-in-place concrete segments that vary from 12 ft to 27 ft 2 in. deep with an 89-ft 4½-in.-wide deck, two octagonal concrete piers at the river, and other piers shaped like the river piers split apart into twin walls

BRIDGE CONSTRUCTION COST: $95 million
minimize the structure in the piers, pier caps, or superstructure to ensure no disruptions to the smooth lines. The piers provide a look that respects the context of the site, creating a different appearance from every perspective owing to their geometric shapes.

Limited Site Access
The balanced cantilever method was used on the project due to the limited access at the site. Using cast-in-place concrete with form travelers minimized equipment on the ground and equipment to lift components 200 ft in the air. However, the remote project area and tall piers created challenges for concrete placement for the superstructure. Concrete was pumped from the ground to the forms.

The box girders feature low-permeability concrete with a specified compressive strength of 6000 psi. Close communication with the contractor and the ready-mix concrete supplier ensured there was a steady flow of concrete for segment casting requiring as much as 180 yd³. This portion of the work was fairly typical except for the exceptional heights involved. The bridge is located in a fairly remote portion of the state, with few concrete plants in the area, so logistics were a key part of the planning for the project.

The concrete superstructure was cast year round, including the harsh winters of western Pennsylvania. This required more attention to curing methods, which consisted of using enclosures, heating elements and wet burlap on the deck. Epoxy-coated reinforcement was used in the deck as well as any bars extending into the deck, including diaphragm and web reinforcement.

Four Form Travelers Used
Construction of the superstructure, which is nearing completion, is being accomplished with four form travelers, two per cantilever, allowing two cantilevers to be constructed simultaneously. Cantilevers 2 and 5 were cast first, followed by 3 and 6. Cantilevers 1 and 4 are being completed this fall, with finishes and other detail work expected to be completed by spring 2012.

In all, 51,000 yd³ of concrete, 7 million lb of reinforcing steel and 3 million lb of post-tensioning tendons are being used in the project. After each pair of segments is completed, they are post-tensioned both transversely and longitudinally with cantilever tendons within the deck. Once the spans are closed between the cantilevers, the continuity tendons along the bottom slab and draped tendons that extend from pier to pier are stressed to complete the span.

When the bridge is completed in the spring, users will benefit by having a distinctive concrete structure set against a lush environment and constructed at low cost. The bridge will ease access in the area well into the future. Even better, it provides a best-value solution for the Pennsylvania Turnpike and a durable bridge that will benefit users for 100 years or more.

Brice Urquhart is regional director with FIGG in the Northeastern regional office near Philadelphia, Pa., and Jim Stump is the Bridge Engineering Manager at the Pennsylvania Turnpike Commission in Harrisburg, Pa.

For additional photographs or information on this or other projects, visit www.aspirebridge.org and open Current Issue.
If precast was this simple...

Anyone could build forms.

But precast/prestressed concrete is not simple at all. It’s a highly engineered, complex product with strict specifications, tight tolerances and superior strength, making it one of the most durable and long lasting building materials known to man.

To produce precast/prestressed concrete you need carefully engineered, long lasting, high quality forms. That’s why more and more precast producers turn to the experience, expertise and innovation that is Hamilton Form.

When your next project demands custom solutions that are practical, versatile and long lasting, trust the experts at Hamilton Form. We’ve got a proven track record for designing and fabricating hardworking forms and plant production equipment that solve even the most sophisticated manufacturing challenges.

Precast/prestress... it’s not that simple. Until it is, depend on Hamilton Form.

Custom forms. Custom equipment. Practical solutions.

Hamilton Form Company, Ltd.
7009 Midway Road • Fort Worth, Texas 76118
sales@hamiltonform.com • 817-590-2111
Creating a Level Playing Field

A BRIDGE AND A PARK BUILT OVER BUSY FREEWAY
by Robert L. Fernandes, Ross A. French, and S. Ping C. Liu, BergerABAM

The Northeast 36th Street Bridge and roundabout intersection in the city of Redmond, Wash., located 15 miles northeast of Seattle, was completed and opened to traffic in December 2010. The new bridge, a landscaped lid offering many pedestrian amenities, provides an overcrossing of State Route 520, which includes the well-known “floating bridge” that connects Redmond, the home of Microsoft World Headquarters and the University of Washington campus.

The new 414-ft-long bridge measured along the travelled way, connects two sides of the expanding Overlake neighborhood in Redmond, over SR 520, and adjoins a recently expanded Microsoft campus. The two arterials connected by the Northeast 36th Street Bridge are some of Redmond’s most congested roadways. The new bridge will help to alleviate bottlenecks on nearby interchanges and the impacts of the projected population and employment growth in the Overlake area. Without the new bridge, the existing connections over SR 520 would be overwhelmed. The project is expected to reduce vehicle miles travelled by approximately 135,000 miles per year.

In keeping with Redmond’s designation as the “bicycle capital of the Northwest,” the Northeast 36th Street Bridge is optimized for pedestrian access and bicycle connections. It provides one traffic lane in each direction, bike lanes, sidewalks, and intersection improvements. It also accommodates the future Sound Transit Link Light Rail alignment and a connecting pathway that offers pedestrian access to the nearby Transit Center.

Double-Diamond Plan

The bridge passes diagonally over SR 520 and, according to Redmond’s project manager, Dennis Apland, “is the product of a lot of clever engineering.” The roadway crosses the highway at a 44-degree angle, rather than the more typical 90 degrees. The project is essentially two offset adjoining landscaped lids—a unique and innovative solution that prevented the project from becoming a much more costly tunnel project. The length of each lid along SR 520 is approximately 300 ft, just shy of the length that would trigger expensive fire suppression and ventilation systems for a tunnel designation.

The double-diamond design allowed the bridge to be built using standard construction methods, producing a much more cost-effective project overall. This solution also yielded minimal construction impacts on the major highway below.

The signature design of the Northeast 36th Street Bridge is the unique double-diamond shape, approximately 50,000 ft² landscaped lid spanning SR 520. All photos: BergerABAM.
Design Challenges and Alternatives

The alignment was originally planned to cross SR 520 at approximately a 60-degree skew. This skew, combined with limited space for a bridge pier in the median of SR 520 and the need to keep the abutments out of the 280-ft-wide right-of-way, created some unique challenges—and opportunities—for the project participants. At a 60-degree skew, a new bridge constructed parallel to the proposed roadway alignment would have been a two-span structure, approximately 560 ft long with spans of approximately 280 ft. Structure depth and profile issues would have required radical changes to property access on either side of the crossing.

The arrangement of offset landscaped lids reduced the overall deck area that would have been required for a conventional continuous lid. It reduced the roadway alignment skew to about 45 degrees and allowed the lid to cross SR 520 at approximately 25 degrees. The resulting span lengths were 150 ft and 164 ft for the westbound and eastbound lids, respectively, which allowed the use of precast, prestressed concrete beams for the superstructure. This solution provided a vibrant urban connection for users, and was architecturally compatible with the other nearby crossings.

Structural Design Features

The framing consists of 56, WSDOT WF83G, precast, prestressed concrete bulb-tee beams. The beams are 83 in. deep and feature a 49-in.-wide top flange. The beams were spaced at about 6 ft 4 in. in the 150-ft-long westbound lid and at 5 ft 0 in. in the 164-ft-long eastbound lid, almost flange to flange. The close spacing was a direct result of the need to design the landscaped areas of the lid for a total load of 510 lb/ft², in addition to the standard highway loadings under the roadway portion. The specified concrete compressive strength was 10,000 psi. The beams used 0.6-in.-diameter strands for the 38 or 42 straight strands and 22 or 24 harped strands.

Completion of the cast-in-place concrete deck was complicated by the geometry of the project. In order to simplify the casting, an unbroken planar surface was specified. The deck over the beams varied in thickness from 8 to 10.5 in. The top mat of reinforcing steel was epoxy coated. The roadway crown section was accomplished with asphalt, varying in thickness from 2 to 6 in. The remainder of the deck was covered with soil up to 36 in. deep.

A key challenge for the structural design was the center pier and the structure’s seismic demands. To maintain WSDOT standards for shoulder widths and sight distance on SR 520, the width of this pier could not exceed 6 ft. This constraint, combined with the need to let the offset beams rotate freely and independently due to the deck weight and landscape surcharge, required the introduction of an expansion joint at the center pier where the two offset lids overlapped. This joint allows rotation, but was detailed to prevent horizontal movement of the superstructure, relative to the pier, in both the transverse and longitudinal direction. This, in-turn required the abutments to be founded on a series of fourteen 6-ft-diameter drilled shafts. The shafts were not required for vertical load but were required to create a deep abutment wall capable of developing the passive pressure required to limit the longitudinal movement of the two spans in a seismic event. The center pier...
itself was approximately 260 ft long, consisting of 14 columns supported on a 10-ft-wide spread footing. The center pier provides only vertical support for the structure, as its lateral movements are limited.

Precast Concrete Columns

Construction of the center pier spread footing in the median of SR 520 required a 16-ft-deep shored excavation. Because WSDOT was paving SR 520 at the time the project was bid, construction of this pier was delayed by 6 weeks. Because the beam supplier was extremely busy at this time, the 6 week delay was projected to have a ripple effect on the delivery and erection of the beams, and the subsequent completion of the deck construction and approach paving. The weather-sensitive approach paving and substantial completion of the project would be delayed by as much as 6 months. In order to expedite the construction of the center pier and recover the schedule, a decision was made to redesign the 14 columns to be precast concrete rather than cast-in-place. The columns were cast on site and erected in the median where footing cages had been assembled. This recovered about 4 weeks of the original 6-week delay, allowing the remainder of the pier construction and beam erection to proceed in accordance with the contractor’s original plan to pave the approaches and complete the project in the fall.

Robert L. Fernandes is vice-president, Ross A. French is project engineer VI, and S. Ping C. Liu is communications manager, all with BergerABAM in Seattle, Wash.

For additional photographs or information on this or other projects, visit www.aspirebridge.org and open Current Issue.
LARSA 4D

The Complete Software for Bridge Design, Analysis, & Construction

BRIDGE SERIES
4D BRIDGE PLUS | 4D BRIDGE | 4D BRIDGE pLT

The trusted company standard at ATKINS, FIGG, HDR, International Bridge Technologies, Parsons Brinckerhoff, T.Y. Lin International and many other leading firms around the world.

For a free trial license visit us at www.LARSA4D.com

1.280 Veteran’s Glass City Skyway
FIGG Engineering Group

1.800.LARSA.01 New York
The San Bernardino Mountains have long provided a key recreational outlet for the millions of residents populating the valleys and coastlines of sunny southern California. Big Bear Lake is situated approximately 100 miles east of Los Angeles in the San Bernardino National Forest at an elevation of 6752 ft. It is an idyllic mountain resort community and a major destination for year-round recreation. Fishing, boating, hiking, and camping are abundantly available during the warmer seasons, while skiing and other snow related activities are a real favorite of winter enthusiasts.

Big Bear was established as a local resort destination in 1884, after construction of the first dam and the subsequent establishment of a lake in a valley surrounded by picturesque mountain peaks. A larger capacity dam, impounding a 73,000 acre-ft lake, was constructed in 1912 and still stands today.

History of the Bridge
San Bernardino County completed a concrete highway bridge crossing the dam to provide access directly to the resorts from the San Bernardino valley floor in 1924. The 351-ft-long, 21-ft-wide bridge carried two lanes of traffic with one narrow sidewalk. The bridge comprised 12 spans of four girders each. The girders were haunched concrete T-beams resting atop arched ribs attached to the face of the concrete dam. The girder depth varied from 2.5 ft at the center of the spans to 3.5 ft at the simply supported ends.

During the Great Depression, the highway network crossing the San...
Bernardino Mountains was transferred to the State of California. The highway crossing the dam was designated as State Route 18 (SR 18).

An Aged Bridge
Nearly 60 years after it was opened to traffic, widespread deterioration was reported during an inspection and a replacement was deemed a high priority. The report identified numerous locations of concrete spalls and corroded reinforcing bars. The bearing pads at each of the dam’s arch spandrels had suffered significant damage from years of deicing salts applied to the bridge deck. Temporary measures were instituted while a replacement was planned.

Finally, the configuration of the highway at the bridge as well as the narrow width of the structure played an important role in its demise. The orientation of the dam relative to the approaching highway forced traffic to turn left at a stop sign just west of the old bridge to remain on SR 18 toward their destination in Big Bear. The narrow width among other factors led to a “Functionally Obsolete” classification. The “Sufficiency Rating” or overall health indicator of the bridge as of March 2003 was 19.6 (out of 100 possible), with ratings less than 80 considered deficient. Key factors in computing these values such as deck geometry were such that they could not be enhanced through rehabilitation, leaving replacement as the only true viable option.

Creating a Dramatic Defining Community Landmark
Designers worked closely with the appropriate regulatory agencies at the federal, state, and local levels, as well as the local community to develop replacement alternatives. The bridge replacement project was required to meet both federal National Environmental Protection Act and California Environmental Quality Act environmental statutes. The final environmental document, begun in 1984, was signed in 2007, with construction commencing in late 2008.

Several alternatives were developed during the environmental phase of the project, with environmental impacts including potential mineral pollution of the lake water from an alignment directly over the lake as well as general aesthetic impacts. The final alignment diverted south of the existing dam, creating a new bridge crossing Bear Canyon. This alignment afforded a dramatic canvas to create a signature bridge capturing the spirit of the community while integrating with the steep jagged ravine.

A Concrete Solution
A 474-ft-long arch bridge with two 237-ft equal spans of post-tensioned, cast-in-place concrete box girders now graces the pristine landscape, as if it were leaping from one rock face of the ravine to the other effortlessly. The bridge is on a tangent alignment at Abutment 1, changing to a 501-ft-radius curved alignment near Abutment 5. The profile grade of the bridge is at 0.8% with a 2% cross slope. The superstructure is supported on polytetrafluoroethylene (PTFE) spherical bearings at the abutments and two 6.5-ft friction pendulum isolation bearings at the

POST-TENSIONED, CAST-IN-PLACE CONCRETE ARCH SUPPORTING CAST-IN-PLACE BOX GIRDER / CALIFORNIA DEPARTMENT OF TRANSPORTATION, OWNER

SEISMIC ISOLATION BEARINGS: Earthquake Protection Systems, Vallejo, Calif.

BRIDGE DESCRIPTION: A 474-ft-long structure with two 237-ft equal spans of post-tensioned, cast-in-place concrete box girder. The 10-ft deep box girder superstructure rests on a cast-in-place concrete arch. The arch cross-section is hollow, trapezoidal in shape, with a depth that varies from 10 ft at the crest to approximately 15.5 ft at the base. The arch splits into two legs that are combined at the crest with a width of 45 ft. Each leg is 22.5 ft wide at the base.

BRIDGE CONSTRUCTION COST: $35.5 million
The Big Bear valley . . . is underlain with numerous faults, including the south branch of the San Andreas Fault.

crest of the arch. Each isolation bearing carries 4600 kips and has a longitudinal movement capacity of 18 in. Two 72-in.-diameter, cast-in-drilled-hole piles support each corner of the abutments. These piles along with isolation bearings provide the necessary lateral strength required to meet the seismic demand of the bridge.

The exterior webs of the girders are sloped at a 45-degree angle. The 12-in.-thick interior webs are spaced at 9-ft centers. The top slab thickness is 8 in. and the soffit slab is 6¼ in. thick. The design concrete compressive strength is 5000 psi. All of the top slab reinforcement including the reinforcement for the barrier railings is epoxy coated.

The superstructure is post-tensioned with 4200 kips of force in each web for a total jacking force of 33,600 kips. A typical group of tendons has three 4-in.-diameter ducts and one 4½-in.-diameter duct. The 4-in. ducts contain twenty-two, 0.6-in.-diameter strands while the 4½-in. duct has twenty-seven, 0.6-in.-diameter strands. All of the ducts were fully grouted after the structure was stressed.

Cast-in-Place Arch
The arch consists of two cast-in-place reinforced concrete legs separated at the two bases and connected at the crest of the arch. The arch cross-section is hollow and has a trapezoidal shape with a depth that varies from 10 ft at the crest to approximately 15.5 ft at the base. From the crest, it splits into two legs. The top width of each leg of the arch is 22.5 ft at the base and 45 ft combined width at the crest. The bottom width of each leg varies. There are four circular continuous reinforcement cages at each corner of each half of the arch connected with 18-in.-thick reinforced concrete top and soffit slabs and 24-in.-thick webs. The specified concrete compressive strength of the arch ribs was 3500 psi.

Seismic Safety
The new bridge meets current seismic design criteria, lending a dramatic improvement over the old structure. The Big Bear valley and surrounding landscape is underlain with numerous faults, including the ominous south branch of the San Andreas Fault. The latter is presumed capable of a maximum credible event exceeding 8.0MMS on the Richter scale. The other lesser faults in the region may produce events ranging from 6.0 to 7.5MMS.

Capacity, Operations, and Maintenance
The new structure provides one 12-ft lane in each direction for traffic, a right-turn lane for westbound traffic heading onto SR 38 around the west side of Big Bear Lake, and two 10-ft shoulders. The shoulders facilitate snow removal by accommodating temporary snow storage. A black-tinted polyester concrete deck overlay reduces icing potential, thus minimizing the need for damaging deicing chemicals.

A Community Identifier
The new bridge is a testament to a road well traveled. When visitors ascend SR 18 and reach the entrance of Big Bear Lake, the site of the new bridge tells them they have arrived, that they have made it to Southern California’s only four-season resort. The opening of the bridge was accomplished with great fanfare on June 24, 2011. The bridge has created a resurgence of pride in the local community as its aesthetically pleasing architecture is certain to win accolades and draw tourists and bridge enthusiasts for the next century to this pristine alpine resort community. The timing of its opening during a protracted recession is certain to help revive the local economy.

Raymond W. Wolfe is the District 8 director for the California Department of Transportation in San Bernardino, Calif., managing operations throughout San Bernardino and Riverside Counties; Ali Asnaashari is a senior bridge engineer for the California Department of Transportation in Sacramento, Calif., and the designer of record for the bridge; Bill Jahn is the mayor of Big Bear Lake, Calif.

For additional photographs or information on this or other projects, visit www.aspirebridge.org and open Current Issue.
As one of the largest design-build contractors in North America, Flatiron is your single source of responsibility for quality, budget and schedule. We have strong relationships with many of the nation’s design firms and partner with designers best suited for your project. Our teams are recognized with the nation's top design-build awards for innovation, and our ideas often lead to higher quality, faster schedules and reduced environmental impacts. Learn more about how Flatiron helps clients deliver successful design-build projects:

www.flatironcorp.com/designbuild

A HOCHTIEF Company
The Dulles Corridor Metrorail Project, a two-phase, 23-mile extension of the existing 106-mile Metro rail system, will connect the nation’s capital, Tysons Corner, and Washington Dulles International Airport. Construction of Phase 1, the first 11.6 miles, is nearly 50% complete. It will include five stations and multiple auxiliary power facilities and environmental controls.

One of the project’s biggest challenges has been working in and around this heavily congested area. Work sites are limited and narrow, mostly in the medians of the area’s most traveled thoroughfares where traffic moves just feet away. “The safety of the traveling public and our employees is the top priority of this project,” said George Morschauser, executive director for the project’s design-build contractor.

Project Orientation

Phase 1 features nearly 3 miles of aerial guideway. The rest of the alignment will run at-grade except for a 2400-ft-long tunnel between two of the stations. There are three guideway sections in this new alignment: “O-1,” “Tysons East,” and “Tysons West.”

The O-1 begins at the eastern end of the project, where the new line will split from the existing Metro Orange Line. It features two parallel, 1600-ft-long guideways that fly over I-66, a major interstate highway.

The other two guideways, Tysons East and Tysons West, are precast segmental concrete box girder bridges constructed using highly-visible trusses—massive machines that are unlike anything most of the area’s traveling public has ever seen.

The congestion of Tysons Corner was a main reason to use trusses for the majority of the guideway work instead of ground-based cranes. “We’re using overhead trusses because they are the most efficient method,” said Shawn MacCormack, the project’s task manager for aerial structures. “They are ideal in dense urban environments like Tysons Corner because they use a ‘top-down’ construction method and have little impact on the traveling public.”

Traveling from east to west, once over the O-1 guideway, the rail line will descend to grade level for about 2 miles in the median of the Dulles Connector Road (Route 267). Then, the Tysons East guideway begins, crossing over into Tysons Corner, and into the first of the four Tysons Corner stations. From there, the rail will continue at an elevated level, ascend to its highest point—approximately 55 ft—over the eight-lane I-495 Capital Beltway and then descend into the second station where the rail line briefly goes underground.

The alignment resurfaces in the median of Route 7 at the third station, which is partially underground. From there, the Tysons West guideway begins, running for about a mile and through the fourth station. One final flyover takes the guideway westward into the median of the airport access highway, descending to grade for the rest of the alignment. The fifth station is located approximately 4 miles west of Tysons Corner.

How They’re Built

The Tysons East and West guideways are being constructed using more than 2700 precast concrete segments that are fabricated in an off-site facility on Dulles Airport property. All segments are match cast. The short-line casting method is used for the typical main guideway segments and the shallower station segments use the long-line casting method.

The segmental box is approximately 7 ft 6 in. wide by 8 ft deep, with a top flange approximately 16 ft wide for the Dulles Corridor Metrorail Project Aerial Guideways / Tysons Corner, Virginia

Substructure Design Engineer: Bechtel, Vienna, Va.

Superstructure Design Engineer: Corven Engineering Inc., Tallahassee, Fla.

Construction Engineer and Erection Trusses Manufacturer: Deal, Pozzuolo del Friuli, Italy

Prime Contractor: Dulles Transit Partners, Vienna, Va.—a team of Bechtel and URS

Concrete Supplier: DuBROOK Concrete Inc., Chantilly, Va.

Precaster: Rizzani de Eccher USA, Bay Harbor Islands, Fla.
typical guideway sections. The boxes change to 7 ft wide by 5 ft deep with a 16-ft-wide top flange through the stations, where the spans are about 50% shorter. Guideway spans have slightly thinner webs and slabs at 9 in. thick, while station segment webs and slabs are 10 in. thick.

Segments are trucked one-by-one to their locations and hoisted into place by the truss, where their match-cast faces are coated with epoxy, joined together, and aligned. Segments are approximately 10 ft long depending on the radius of the alignment at that location. Span lengths are generally dictated by the availability of ground for locating the cast-in-place concrete piers, but where support is required in a road, straddle bents are constructed to avoid permanent road diversions.

Support piers across the project vary in both footprint and height, ranging from 10 ft tall atop hills in the middle of an intersection cloverleaf to 55 ft tall between two road bridges. In plan, most piers are rectangular with rounded corners. Plan dimensions range from 6 by 7 ft to 7 by 12 ft.

Concrete
Specified concrete compressive strength for the columns and pier caps is 5000 psi. The concrete strength is increased where the substructure pier caps require post-tensioning due to their span lengths; in these cases, the concrete strength requirement is 6000 psi. Column and pier cap concrete includes a calcium nitrite corrosion inhibitor to protect the reinforcement from corrosion from deicing salts from road splash.

Concrete compressive strengths for the precast segments range from 6000 to 8500 psi depending on their location. Both simple spans of roughly 130 ft and station spans have used 6000 psi, while the larger spans and balanced cantilever structures have required 8500 psi. The mixes use ground-granulated blast-furnace slag as a supplemental cementitious material.

Concrete maturity meters were used for the in-place strength of the cast-in-place substructure concrete where post-tensioning was not required. This enabled the aerial crews to strip both column and pier cap formwork systems earlier and reuse them elsewhere. The client approved the use of these meters for stripping formwork, but not for verification of strength prior to post-tensioning. Curing compound was used on fresh concrete when the formwork was stripped before 7 days or less than 70% of the design strength was achieved.
Post-Tensioning

Post-tensioning is used throughout the project. In the stations, it is used in the substructure pier caps, straddle bents, and precast concrete mezzanine beams. The precast concrete box beams in the O-1 guideway use 1¾-in.-diameter lateral post-tensioning bars at six locations in each span. The standard design of the segmental concrete box girders for locations both inside and outside the stations contains six tendons per span. With minor exceptions, these comprise four 19-strand tendons at 750 kips each, and two 15-strand tendons at 600 kips each—totaling 4200 kips of post-tensioning in each span. Tendons in the longest cast-in-place concrete straddle bents use up to 31 strands. All post-tensioning strands are 0.6 in. diameter.

Grout for the post-tensioning ducts is produced from one of two dedicated mobile grout trailers. Each trailer contains a storage area for the grout and water, and the colloidal mixer, and a shelter area for the workers. Grouting operations are done in accordance with standard American Segmental Bridge Institute practices.

The steepest grade is 4% at the I-495 crossing, and almost none of the guideways is perfectly level, with the exception of the stations. The decks and segments do not have any super-elevation because the concrete rail plinth, which is cast on the deck after erection, provides this slope.

For safety reasons, bridge construction is not allowed over active roadways, so a large amount of the work is being done overnight. This time constraint on the aerial team required intense planning and coordination with the project’s maintenance of traffic team, as well as the Virginia Department of Transportation (VDOT) and the project owner.

Phase 1 construction has about a year and a half to completion. The aerial guideways are scheduled for completion by May 2012. Once the system is turned over to Metro, approximately 6 months of pre-revenue testing and integration with the existing system will occur, with the first new riders boarding by the end of 2013.

Shea Daugherty is construction communications manager and Chris Jennions is aerial lead field engineer, both with Dulles Transit Partners in Vienna, Va.

For additional photographs or information on this or other projects, visit www.aspirebridge.org and open Current Issue.
Certification is more than inspections, paperwork, and checklists! It must be an integrated and ongoing part of the industry's Body of Knowledge! PCI is the technical institute for the precast concrete structures industry and as such, PCI Certification is an integrated and ongoing part of the industry's body of knowledge. Specify PCI Certification and hold the winning hand.
Just outside the tiny community of Echo, in Summit County, Utah, thousands of motorists drive by on I-80 every day. In this area, I-80 is a smooth, easy route—a portion of one of the longest interstate highways in the country carrying people and products coast-to-coast for 2900 miles.

Two deteriorating bridges on I-80 in this area threatened to shut down this important corridor as the Utah Department of Transportation (UDOT) needed to replace the structures. The agency estimated that any disruption to I-80 would detour the high volume of interstate truck traffic for 90 miles.

UDOT is recognized as a leader in innovative accelerated bridge construction (ABC). They challenged the consulting and construction industry to find a way to minimize impact to the traveling public as part of the replacement of the I-80 bridges over Echo Dam Road. The agency stipulated that the design-build team must remove existing bridges and approach ramps and construct new bridges within 135 calendar days after the notice to proceed. Additionally, the closure of I-80 at Echo Dam Road was limited to 16 hours. To receive the full incentive, the road needed to be open to traffic in less than 11 hours. The contract also stipulated incentive/disincentive pay for every 15 minutes that I-80 was opened or closed as measured against the allowable time window.

The design-build (D-B) contract was awarded in April 2009. The team then developed the first project in the United States to move a bridge span into place, including the approach slabs, in just a matter of hours using hydraulic rams and slide rails. This resulted in another new first for UDOT and their innovative methods for ABC, and for a cost of approximately 60% of the state’s estimate.

The original three-span, I-80 twin bridges over Echo Dam Road were approximately 40 ft wide and 101 ft long including fill slopes under the approach spans that rested on stub abutments. The span lengths were 30.5, 44, and 26.5 ft. The new twin bridges are each 44 ft 10 in. wide with a single 80-ft-long main span and 25-ft-long approach slabs at either end. The approach slabs are designed to span their full length to allow for bridge settlement at the abutments. After reaching their final location, flowable fill was used beneath the approach slabs. There is a special joint between the deck and approach slabs that allows rotation if the approach slabs settle.

To meet the tight timeline and vertical clearance requirements, the D-B team opted to use economical, single-span
UDOT is recognized as a leader in innovative accelerated bridge construction.

AASHTO Type II precast, prestressed concrete beams for the main span. The beams use 8500 psi compressive strength, normal weight concrete and contain prestressing strand and epoxy-coated reinforcement as required by the UDOT standard specifications. The beams are spaced at 6 ft 8 in. on center. Cast-in-place, lightweight concrete with a unit weight of 113 pcf is used in the 8-in.-thick deck, approach slabs, and 42-in.-tall parapets. The lightweight concrete reduced the sliding weight and temporary shoring cost. It allowed the Type II beams to reach the required 80-ft span, some 10 ft more than typically used.

The bridge foundations incorporate 16-in.-diameter, high-capacity pipe piles driven into the bedrock. These piles are located outside the footprint of the existing structure to allow them to be driven without affecting the existing structure.

The ABCs of the Slide
During design, the project team evaluated several proven ABC techniques.

Self-propelled modular transporters (SPMTs) were investigated. But, at this location, SPMTs would have required extensive soil nail walls and grading to accommodate access. Further, it would have been necessary to shorten the new bridge and move the new abutments closer to the road, or the abutment slopes and approach slopes would have had to be cut out and soil nailed to allow the SPMTs to support the bridge closer to its ends.

Shortening the bridge and moving the new abutments was not a viable option. After the new bridge was moved into place, a large amount of backfill, approach slab construction, and paving would need to be done—too much work to complete in 16 hours.

Instead, the engineers opted to construct the new bridge adjacent to the existing bridge and then use hydraulic rams and slide rails to move the new bridge and approaches into place after demolishing the existing structures. New abutments were built between the existing abutments and the intermediate columns and just below the existing bridge superstructure. While this method required the construction of temporary abutments as an extension of the new abutments, it eliminated the need for extensive backfill after moving the new bridge into place.

The slide rail option would also work well for the approach slabs. The D-B team had considered precast concrete approach slabs, but realized that the time needed to install the slabs, align and grout them would be too long to meet the requirements of the contract. A key advantage of the slide option was the ability to slide the approach slabs with the bridge, thus eliminating the additional time associated with separate panels. This also eliminated additional joints and assured a smoother transition to the bridge.

Sliding Scheme
The slide rail system relies on two hydraulic rams, each mounted on a sliding rail to push the superstructure into final position. Each ram had a working capacity of 200 kips, which turned out to be more than twice the force necessary to move the structure. On this project, the new permanent abutments provided lateral stability to the temporary abutments, by anchoring them to the permanent abutments with cast-in anchor bolts.

To facilitate sliding the superstructures, two concrete shoes surfaced with stainless steel were cast on the underside of each end diaphragm. In the final condition, the shoes transfer the vertical loads to the abutments. The temporary abutments were designed with a small platform in front of the end diaphragms at every other beam. At these locations, screw jacks were used to raise the superstructure.

With the superstructure raised just slightly, the slide rail, or “ladder beam,” was inserted the length of the temporary abutment and connected to the abutments via link plates to the transfer plates. The transfer plates were attached to a base plate embedded and anchored to the concrete with...
shear studs. Once the slide rail was in place and connected to the abutment, elastomeric bearing pads with a polytetrafluoroethylene (PTFE) surface were placed evenly spaced along the slide rail and the superstructure was lowered onto the pads. The jack pushed the bridge about 3 ft, then a lock tab on the jack was lifted and the jack pulled itself along the “ladder;” the lock tab was set and the bridge pushed another 3 ft.

Precast concrete sleeper slabs were used at the roadway ends of the approach slabs; two sections per end, with one for each phase of the move. These act as grade beams to support the slabs. Shaped like an inverted “tee,” the base is 5 ft wide and the upturned stem is 12 in. thick and varied in depth from 14 to 24 in. to accommodate a sloping roadway. The sleeper slabs used concrete with a specified compressive strength of 4000 psi. A weathering steel tee shape was embedded with about ¼ in. of the flange of the tee protruding above the top of the slab for a sliding surface.

At the ends of the approach slabs, a weathering steel tee shape was embedded in the bottom of the approach slab. The dead load reactions at the ends of the approach slabs were much less than at the end diaphragms. Block outs at each corner of the approach slabs under the parapet, allowed the contractor to jack the approach slab a few inches into the air, grease the steel-to-steel sliding surfaces and install the 1/8-in.-thick PTFE pads to further reduce friction.

Let it Slide
The westbound bridge was moved into place on September 29, 2010, 4½ months after receiving the notice-to-proceed. On that day, crews closed one lane for the day while a section of the existing structure was demolished and the first section of the precast concrete sleeper slabs was moved into place at both ends of the bridge. During this single-lane closure, the bridge was pushed the first 10 to 12 ft to test the procedures and make necessary adjustments.

At 10:00 p.m. the same day, the entire westbound bridge was closed. Two hours later, the crews had demolished the remainder of the westbound structure. During this time, crews were installing guardrail and the last two pieces of the precast sleeper slabs. Once the precast sleeper slabs were in place, the hydraulic jacks began pushing the bridge into place. Approximately 3 hours later, the bridge was in its final location. When in motion, the bridge traveled at about 2 ft/min. Additional time was required to reset the jacks and align the bridge.

The approach slab compression seals were installed in the joint at the sleeper slab stem, the roadway approaches were paved, and the bridge was open to traffic by 4:47 a.m.—less than 7 hours later and 4 hours faster than required to receive full incentive. Several weeks later, the eastbound bridge was slid into place and opened to traffic 7 hours after full closure.

Hugh Boyle is senior project manager—bridge services lead with Michael Baker Jr. Inc. in Midvale, Utah.

For additional photographs or information on this or other projects, visit www.aspirebridge.org and open Current Issue.

Beam erection is complete on the temporary abutment.

Precast concrete sleeper slabs were used at the roadway ends of the approach slabs; two sections per end, with one for each phase of the move. These act as grade beams to support the slabs. Shaped like an inverted “tee,” the base is 5 ft wide and the upturned stem is 12 in. thick and varied in depth from 14 to 24 in. to accommodate a sloping roadway. The sleeper slabs used concrete with a specified compressive strength of 4000 psi. A weathering steel tee shape was embedded with about ¼ in. of the flange of the tee protruding above the top of the slab for a sliding surface.

At the ends of the approach slabs, a weathering steel tee shape was embedded in the bottom of the approach slab. The dead load reactions at the ends of the approach slabs were much less than at the end diaphragms. Block outs at each corner of the approach slabs under the parapet, allowed the contractor to jack the approach slab a few inches into the air, grease the steel-to-steel sliding surfaces and install the 1/8-in.-thick PTFE pads to further reduce friction.

Let it Slide
The westbound bridge was moved into place on September 29, 2010, 4½ months after receiving the notice-to-proceed. On that day, crews closed one lane for the day while a section of the existing structure was demolished and the first section of the precast concrete sleeper slabs was moved into place at both ends of the bridge. During this single-lane closure, the bridge was pushed the first 10 to 12 ft to test the procedures and make necessary adjustments.

At 10:00 p.m. the same day, the entire westbound bridge was closed. Two hours later, the crews had demolished the remainder of the westbound structure. During this time, crews were installing guardrail and the last two pieces of the precast sleeper slabs. Once the precast sleeper slabs were in place, the hydraulic jacks began pushing the bridge into place. Approximately 3 hours later, the bridge was in its final location. When in motion, the bridge traveled at about 2 ft/min. Additional time was required to reset the jacks and align the bridge.

The approach slab compression seals were installed in the joint at the sleeper slab stem, the roadway approaches were paved, and the bridge was open to traffic by 4:47 a.m.—less than 7 hours later and 4 hours faster than required to receive full incentive. Several weeks later, the eastbound bridge was slid into place and opened to traffic 7 hours after full closure.

Hugh Boyle is senior project manager—bridge services lead with Michael Baker Jr. Inc. in Midvale, Utah.

For additional photographs or information on this or other projects, visit www.aspirebridge.org and open Current Issue.

Let it Slide
The westbound bridge was moved into place on September 29, 2010, 4½ months after receiving the notice-to-proceed. On that day, crews closed one lane for the day while a section of the existing structure was demolished and the first section of the precast concrete sleeper slabs was moved into place at both ends of the bridge. During this single-lane closure, the bridge was pushed the first 10 to 12 ft to test the procedures and make necessary adjustments.

At 10:00 p.m. the same day, the entire westbound bridge was closed. Two hours later, the crews had demolished the remainder of the westbound structure. During this time, crews were installing guardrail and the last two pieces of the precast sleeper slabs. Once the precast sleeper slabs were in place, the hydraulic jacks began pushing the bridge into place. Approximately 3 hours later, the bridge was in its final location. When in motion, the bridge traveled at about 2 ft/min. Additional time was required to reset the jacks and align the bridge.

The approach slab compression seals were installed in the joint at the sleeper slab stem, the roadway approaches were paved, and the bridge was open to traffic by 4:47 a.m.—less than 7 hours later and 4 hours faster than required to receive full incentive. Several weeks later, the eastbound bridge was slid into place and opened to traffic 7 hours after full closure.

Hugh Boyle is senior project manager—bridge services lead with Michael Baker Jr. Inc. in Midvale, Utah.

For additional photographs or information on this or other projects, visit www.aspirebridge.org and open Current Issue.
Delivering Top Quality Concrete Bridges for our Clients around the Globe

I-10 Escambia Bay Bridge, Pensacola, Florida
Minisa Bridge, Wichita, Kansas
I-95/I-295/SR 9A Ramp, Jacksonville, Florida
Mattaponi River Bridge, West Point, Virginia

...Changing tomorrow today...

parsonsbrinckerhoff.com

With over 125 Years of Engineering Excellence
Built in 1928, the 570-ft-long, eight-span, tied-arch Covered Bridge over the Kennebec River in Norridgewock, Maine, was named one of Maine’s most significant twentieth century bridges by the Maine Historic Preservation Commission. It was a visible landmark, an integral part of Norridgewock’s identity reflected on the town’s logo and letterhead—and, unfortunately, it had outlived its service life.

Rehabilitating or replacing the structure divided a community that was proud of the structure’s historic significance. It was up to the Maine Department of Transportation (MaineDOT) and its engineering team to come up with a feasible, prudent solution that would satisfy the more than 3000 residents of this community and many others interested in historic preservation.

Community Connections
To ensure community support, the agency formed a 10-person committee to determine the new bridge’s look and feel. The committee included the Norridgewock town manager, prominent residents, as well as representatives from the Maine Historic Preservation Commission, the MaineDOT and the Federal Highway Administration.

The committee considered the sentiment attached to the 80-year-old bridge and resolved to build another landmark-type structure. Ultimately, they wanted a “modern” historic bridge that would match the aesthetic and historic appearance of the original bridge with a service life of 100 years and a clearance sufficient for a 50-year flood.

Re-Creating History:
Modern Techniques Preserve Character of Historic Bridge
by Craig Weaver, Kleinfelder

THE COVERED BRIDGE OVER THE KENNEBEC RIVER / NORRIDGEWOCK, MAINE
BRIDGE DESIGN ENGINEER: Kleinfelder, San Diego, Calif.
PRIME CONTRACTOR: Reed & Reed Inc., Woolwich, Maine
FLOOR BEAM PRECASTER: J.P. Carrara and Sons Inc., Middlebury, Vt., a PCI-certified producer
DECK PANEL PRECASTER: Oldcastle Precast Inc., Auburn, Maine, a PCI-certified producer
BULB-TEE BEAM PRECASTER: Strescon Limited, Bedford, NS, Canada, a PCI-certified producer
CONCRETE SUPPLIER: Mattingly Products Co. Inc., North Anson, Maine
POST-TENSIONING SUPPLIER: VSL, Hanover, Md.
Into the Bedrock

Once the original crossing and its piers were removed, crews constructed cofferdams for the new piers and abutments to support the arch span and the two 135-ft-long approach spans. Unlike conventional arch bridges that are commonly anchored into bedrock at each end, the Norridgewock Bridge tied arch rests on pile-supported, concrete column piers in the river.

Reinforced, concrete-filled pipe piles are socketed 10 ft into bedrock approximately 40 ft below the riverbed using H-pile tips. The concrete seal measures 70 ft 4 in. by 18 ft 0 in. by 12 ft 0 in. thick. The distribution slab for the piers is 66 ft 4 in. by 14 ft 0 in. by 5 ft 0 in. thick.

There are two 10-ft-diameter columns at each pier. The pier columns are connected by a curtain wall that prevents ice from forming between them, which would impose additional lateral loads on the bridge.

Overarching Demands

After the approach spans and piers were complete, crews began work on the main span, starting with the construction of six cast-in-place concrete end floor beams and four cast-in-place arch end connections. The three floor beams at the ends of the arches are 3 ft 0 in. wide by 5 ft 9 in. deep and form the connection between the arch rib and tie girder. They are post-tensioned to the tie girder. The arch ribs required concrete with a design compressive strength of 5000 psi. Tie girders and arch end connections use 6000 psi concrete.

As seen from below the bridge, precast, prestressed concrete floor beams frame into the edge tie girders, which are, at this stage of construction, supported on temporary intermediate piers. Photo: Kleinfelder.

The bridge has no deck joints over its 570-ft length. The new Covered Bridge uses precast concrete floor beams and precast deck panels, at the urging of the MaineDOT. While improving durability, these elements helped speed construction, improve quality, and eased construction. The design allows for easy replacement of the steel cable hangers, when needed, with traffic on the bridge. The hangers are the only primary members of the new structure that are made of steel. Concrete main members were chosen as the primary material in the bridge for durability, consistency with the design elements, and overall aesthetics of the original historic structure. Increased concrete cover on the reinforcement was specified beyond code minimums. Also, reinforcing steel meeting ASTM A1035 was used in the deck and parapet. Elastomeric bearings were used and jacking points provided should replacement of the arch bearings be necessary. The design of the substructure provided for the scour potential of the Kennebec River.

Self-consolidating concrete was used for the anchor zone of the arch end connection due to the congestion of the reinforcement and post-tensioning ducts and anchorages.

The arch ends connect the base of each arch rib to the tie girder. After the arch ends were complete, crews placed six temporary piers in the river approximately 47 ft apart. Temporary piers were used to support the formwork needed to construct the arch ribs and tie girders. The formwork was constructed in such a way as to permit the concrete structure to shorten and camber due to shrinkage and post-tensioning forces.

THREE-SPAN BRIDGE WITH CAST-IN-PLACE CONCRETE TIED-ARCH CENTER SPAN AND PRECAST, PRESTRESSED CONCRETE BULB-TEE BEAM APPROACH SPANS / MAINE DEPARTMENT OF TRANSPORTATION, AUGUSTA, MAINE, OWNER

HANGAR SUPPLIER: WireCo WorldGroup, Kansas City, Mo.

SHORING SYSTEM SUPPLIER: A.H. Harris & Sons, Newington, Conn.

BRIDGE DESCRIPTION: A 570-ft-long by 46-ft-wide, three-span bridge with a 300-ft-long, 60-ft-high arch span and two 135-ft approach spans

STRUCTURAL COMPONENTS: Two parallel 300-ft-long, 60-ft-high, cast-in-place concrete arch ribs; six cast-in-place concrete transverse braces; two longitudinal post-tensioned concrete edge tie girders; 19 precast, prestressed concrete floor beams; precast, prestressed concrete deck panels; two approach spans with 6-ft deep, 135-ft-long bulb-tee beams; replaceable steel cable hangers; and concrete parapet with a steel pedestrian rail

BRIDGE CONSTRUCTION COST: $21.5 million

[Photo credit for images and diagrams: Kleinfelder.]
Crews erected 19 intermediate precast, prestressed concrete floor beams, 4 ft 0 in. wide by 3 ft 0 in. deep that were connected and post-tensioned to the base section of the concrete tie girders. The tie girders were supported on the six temporary piers and were post-tensioned longitudinally using eight tendons. Each tendon, with a jacking force between 1200 and 1250 kips, incorporates twenty-seven, 0.6-in.-diameter, 270 ksi strands. Round corrugated high-density polypropylene ducts were used.

Ribs and Braces

The next step was to construct the cast-in-place arch ribs and six transverse braces using arch falsework that extends from the six temporary piers. The arch ribs measure 4 ft square with large chamfers at midspan and increase in size uniformly to 8 ft 6 in. at the arch ends. The transverse braces are shaped as inverted “U”s and are 6 ft 9 in. wide x 2 ft 10 in. deep. The concrete was placed in one continuous operation for each rib. Once the arch ribs were complete, the general contractor installed two steel cable hangers at nine locations on each rib to connect them to the cast-in-place, post-tensioned tie-girders. Construction workers then removed the six temporary piers, beginning with the middle pier and moving outward, and began construction of the deck diaphragms, the top sections of the tie girders, and the deck. The completed tie girders measure 5 ft 2 in. wide by 6 ft 0 in. deep.

The majority of the entire bridge deck is formed with 3.5-in.-thick precast, prestressed concrete panels over which a 4.5-in.-thick composite concrete topping is placed. The precast panels used were 8 ft 0 in. by 5 ft 10¾ in. on the approach spans and 8 ft 0 in. by 10 ft 6½ in. and 7 ft 0 in. by 10 ft 6½ in. on the arch span.

The tie girders’ post-tensioning tendons were installed and tensioned in three stages during the construction of the main span. Stage 1 applied 30% of final stressing forces 3 days after the concrete placement in the base section of the tie girders. The full specified forces for the base section were applied after 7 days from concrete placement or when concrete had reached a minimum strength of 5000 psi. Stage 2 tensioning occurred 3 days after the upper portions of the tie girders were placed and Stage 3 tensioning was applied 3 days after the composite topping of the deck was placed.

The two, 135-ft-long approach spans each use six bulb-tee beams, approximately 6 ft deep (NEBT 1800), spaced at 8 ft 10 in. on center.

Another innovative feature is that the bridge has no deck joints. To manage the range of thermal expansion and contraction expected from along the arch deck and two approach spans, engineers incorporated durable elastomeric bridge bearings reinforced with steel. Four large 3-ft 6-in. square and 9-in.-tall bearings were located beneath each of the rib ends and atop the piers to support the arch span. Smaller bearings are located under each end of the bulb-tee beams. The bearings will require less maintenance compared to pot or disk bearings.

Opening with Character

The Covered Bridge opened to traffic July 21, 2011. It is only the second modern concrete tied arch bridge in the United States. The Depot Street Bridge in Oregon is the other. The Covered Bridge is twice the width of the original, with new shoulders and a multi-use lane, and all the modern advancements to help it last for the next 100 years or more—and, according to the community, it looks extraordinary.

Craig Weaver is a project manager with Kleinfelder in Augusta, Maine.

For additional photographs or information on this or other projects, visit www.aspirebridge.org and open Current Issue.
Simplicity is usually a virtue in bridge aesthetics, particularly in a natural environment. At such sites, bridges are usually a small part of a much larger scene. Simple, easily understood shapes make a strong impact where fussy details would be lost in the background. Unfortunately, simplicity can also equal boredom. Those simple shapes must be refined in ways that add interest and grace. The Covered Bridge over the Kennebec River in Norridgewock, Maine, achieves that goal.

The shapes, including the cross bracing, are about as simple as they could be. At the same time, there is a lot of refinement here. The arch ribs taper from their thinnest point at midspan to match the tie girders at deck level. The cross braces have a subtle arch of their own. The dimensions and proportions are so thin that it’s hard to believe that this is a concrete bridge. And the concrete allows simplicity at the joints, particularly at the arch rib-tie girder joint, that no other material could match. Finally, the thin cable hangers contrast dramatically with the concrete members of the bridge, giving the whole structure a light and open appearance.

A final refinement is the way the parapets carry in a continuous line across the whole bridge. They are inside the arch but outside the approach girders. Their overhang above the approach girders creates a shadow line that literally underlines the difference.

Concrete tied arches once appeared frequently along American roads. It is great to see that tradition revived with such a straightforward and graceful example.
As part of a plan to revitalize riverfront commercial development, the city of Laredo, Tex., required a solution to provide easier access to the area. To reach the riverfront, commuters had to negotiate a route of heavily congested, narrow, streets through business and residential areas. The idea was proposed to build an elevated connector from Santa Ursula Avenue, an access road from I-35, to the riverfront and thereby avoid the congestion of the city streets.

The Santa Ursula Connector was proposed to be 31 ft wide and 1155 ft long. The bridge would be required to connect the higher elevation Santa Ursula Avenue to the flood plain. It required spanning over federal property between two international bridges on the Texas-Mexico border. Because the majority of the bridge is below the design high water level by as much as 25 ft, it was necessary to design the bridge to withstand the flood forces of the Rio Grande River.

The engineer’s first task consisted of a feasibility study. The study was followed by the layout and design for the bridge, and coordination with the city of Laredo, Webb County, local utility companies, and federal agencies including the General Services Administration, Customs and Border Protection, and the International Boundary and Water Commission (IBWC).

The IBWC regulates construction within the floodplain; in order to gain their project approval, the impact to the river had to be minimized. Therefore, the bridge required a shallow superstructure to reduce the impact on the river during a flood event. Additionally, a sharp horizontal curve was required to allow space for a future “up ramp” connector to be built. Finally, methods were needed to resist forces from a flood.

Design Challenges
The project presented several design challenges. The requirement for a future “up ramp” adjacent to the Santa Ursula Connector down ramp, necessitated a very sharp horizontal curve with a radius equal to 340.5 ft. It was desired to expedite construction within the federal property. Security within federal property (especially areas at border crossings) is extremely stringent. Workers required being on federal property needed to go through a lengthy federal security background check. Completing construction in secure areas as quickly as possible was a critical aspect of the design.

Finally, due to the bridge’s location, an aesthetically pleasing structure was necessary.

Design Solutions
The Texas Department of Transportation’s (TxDOT’s) 15-in.-deep slab beam was selected to provide the minimum superstructure depth. The slab beam has a rectangular cross section and is available in both 4 and 5 ft widths. The typical cross section was framed with four, 5-ft-wide slabs and two, 4-ft-wide slabs. The slab beam provides a superstructure total depth of just 20 in. including a 5-in. deep cast-in-place composite concrete deck. Because the beams are abutted side-by-side, debris could not become lodged under the bridge during high water.

profile

SANTA URSULA CONNECTOR / LAREDO, TEXAS
PRECASTER: Bexar Concrete Works Inc. Ltd., San Antonio, Tex.
AWARDS: 2010 PCI Bridge Design Award, Best Bridge with Main Span up to 75 ft; 2011 Texas CEC Engineering Excellence Awards, Silver Medal Winner, Category C: Structural Systems
A lateral load analysis of the entire structure was performed including the foundation. Using geotechnical data, the required embedment length of the drilled shafts was determined. The capacity of an extreme event loading was then checked.

The slab beam is seldom used on curved structures. When horizontal and vertical curves are combined, the bearing seats for these very wide, rectangular beams require special details to ensure that torsion is not introduced into the beams. A roadway cross slope adds complexity as well. The engineer determined that it was possible to overcome these hurdles without significant additional cost. The complex geometry was handled with a bridge geometry computer program using a modified and detailed input model.

Aesthetically, the straight-sided, chords of the slab beam were overcome by using a cast-in-place concrete overhang. The slab overhang was formed and cast with the bridge deck. The bottom of the overhang projected below the top of the exterior slab beams. It was connected laterally to the beams with mechanical couplers placed in the exterior edges during fabrication. The cast-in-place concrete overhang provides a very attractive horizontal curvature to the edge and the "drop-down" detail gives the superstructure the appearance of being thinner.

The location of the bridge, between two heavily used international bridges, required a method to ensure that the bridge would remain in place during a flood event. The owner was concerned about the possibility of the new bridge becoming dislodged and damaging or destroying the downstream international bridge. The slab beams are usually restrained from horizontal movement with the use of upturned ear walls on the ends of the bent caps. In addition to the ear walls, a nonstandard strand pattern allowed slotted vertical holes to be formed at the ends of the exterior beams. Hold-down anchors were provided in the tops of the bent caps. The exterior beams were erected with the slotted holes over the hold-down anchors. A steel plate was placed over the beam and clamped in place with a nut. Fiberboard was placed over the plate to allow for the superstructure movement after the deck was cast.

In addition to the shallow depth, the precast slab beams expedited construction over the federal property. Since slab beams are erected and placed side-by-side, they also act as a stay-in-place form for the cast-in-place deck slab. This feature saved valuable time, allowing the contractor to minimize the time of construction.

Design Innovations

The project resulted in innovations and accomplishments that can be considered for future projects with similar constraints. These innovations include:

- Using precast, prestressed TxDOT slab beams for sharp horizontal curves
- Using a nonstandard strand pattern to accommodate slotted holes to be formed in the beam ends for hold-downs to the pier cap
- Anchoring the precast superstructure to the substructure without resorting to cast-in-place concrete connections

The typical section of the single-lane Santa Ursula Connector superstructure.
Construction

The bridge comprises 25 spans, ranging in length from 41.5 to 48.4 ft., for a total length of 1155 ft. The foundations are predominantly 6-ft-diameter, single drilled shafts, 45 to 50 ft deep. Two bents required double drilled shafts to straddle underground utilities. All foundations and bents required a 28-day concrete compressive strength of 3600 psi. All but one of the bents are single column or hammerhead bents. The tallest bent is about 30 ft high. The slab beams required concrete with a minimum compressive strength of 5000 psi. The bridge deck has a minimum thickness of 5 in. at midspan. Continuity is provided in the deck across the transverse construction joints using typical TxDOT details, which are specifically designed to not provide full continuity for live load. The slab overhang depth varies due to the haunch thickness but has an 8.5 in. minimum depth at midspan. The deck concrete required a minimum compressive strength of 4000 psi.

Construction occurred between February 2008 and August 2009. The project construction schedule required adjustments for several local events including an unscheduled flood. Because the connector crossed over a federal inspection station used for overflow border traffic during busy times such as holidays, construction was stopped when use of the station was required.

Conclusion

The Santa Ursula Connector has successfully served the needs of the city of Laredo. It has provided quick and easy access to the riverfront as intended, and has generated interest from developers with concepts for revitalizing the area. Additionally, the connector has shown it can withstand the flood forces of the Rio Grande River when it was tested by the flood of July 2010.

David T. Covarrubias is vice-president and senior project manager, David A. Rocha is project engineer, and Jesse S. Covarrubias is president, all with Structural Engineering Associates Inc., in San Antonio, Tex.

For additional photographs or information on this or other projects, visit www.aspirebridge.org and open Current Issue.
Segment lifter
With variable cross section
Used in Florida, U.S.A.

Beijing Wowjoint Machinery Co.

A leading innovative infrastructure solutions provider of customized heavy duty lifting and carrying machinery used in large scale projects such as railway, highway and bridge construction.
The Office of Federal Lands Highway

The Office of Federal Lands Highway (FLH) provides program stewardship and transportation engineering services for planning, design, construction, and rehabilitation of the highways and bridges that provide access to and through federally owned lands. The federal government has title to about 650 million acres—roughly 30% of the total area of the United States. There are more than 300,000 miles of federally owned roads.

The Office of Federal Lands Highway (FLH) has four offices—Headquarters, and Eastern, Central, and Western Divisions—to provide services to the FLH partners. FLH works closely with the federal land management agencies (FLMAs) and many state and territorial partners. FLMAs include the Bureau of Indian Affairs (BIA), U.S. Forest Service (USFS), National Park Service (NPS), Fish and Wildlife Service (FWS), Bureau of Land Management (BLM), Military Surface Deployment and Distribution Command (SDDC), U.S. Army, U.S. Army Corps of Engineers (USACOE), U.S. Navy, Tennessee Valley Authority, and the Bureau of Reclamation (BOR).

The Federal Lands Highway Program

The primary purpose of the Federal Lands Highway Program (FLHP) is to provide financial resources and technical assistance for a coordinated program of public roads that service the transportation needs of federal and Indian lands. One of the major factors associated with the success of the program is the Federal Highway Administration’s strong relationship with our federal, state, local, and tribal partners.

The FLH Bridge Office

Within FLH, each of the three Divisions (Eastern, Central, and Western) has a Bridge Office. The Eastern (EFLHD) Office is the largest of the three Divisions with 29 people. The Central (CFLHD) and the Western (WFLHD) Offices are made up of nine and three people, respectively.

The FLH Bridge Program

The FLH Bridge Office performs bridge engineering in three program areas: Bridge Inspection, Bridge Asset Management, and Bridge Design and Construction.

The Bridge Inspection Program (BIP) Team based in EFLHD performs bridge safety inspections for eight federal agencies across a nationwide geographic area. The BIP unit inspects nearly 2000 structures with the National Park Service (NPS) structures accounting for approximately 95% of the total. The WFLHD staff also performs safety inspections for a select portion of the Bureau of Land Management’s inventory in the State of Oregon.

The Bridge Asset Management team, located in EFLHD, works with all three FLH Divisions and in partnership with the NPS to assist in developing their bridge rehabilitation/replacement program. Evaluative and predictive tools are used to formulate recommended work priority lists for each of NPS’s seven geographic regions.

The Bridge Design and Construction Program is carried out by staffs in the three FLH Divisions. The FLH Bridge Office is focused on designing bridges in-house, providing review expertise for structures designed by others, and providing technical support for the building of these structures.

Concrete Bridge Projects

Over the years, FLH has often been tasked with building bridges in sensitive sites where aesthetic and environmental considerations greatly influence the choice of structure type and construction method. In many cases, concrete has offered the preferred solution. Several notable examples are: the O’Callaghan-Tillman Memorial Bridge, which bypasses the Hoover Dam and employs a segmental concrete arch as the main supporting component; the Blue Ridge Parkway Viaduct—a precast segmental concrete box girder with very severe horizontal alignment challenges that was erected using top-down construction; and the Natchez Trace Arch Bridge—a segmental concrete box girder that is supported on segmental concrete arches and pier columns.

A current challenging project is the design and construction of Bridge No. 2 on the Foothills Parkway in Tennessee. The EFLHD Bridge staff provided the conceptual engineering for this project and is now providing technical assistance to help administer its final design and construction.
construction. The Foothills Parkway is located in the mountainous foothills of the Tennessee Valley adjacent to the Great Smoky Mountains National Park. Bridge No. 2, in Blount County, is a significant precast segmental single-cell box girder bridge currently under construction for the NPS. The design-build project is led by EFLHD and funded by the American Recovery and Reinvestment Act. The EFLHD is working in partnership with the NPS to administer the design and construction of the Parkway.

The bridge length is 790 ft with five spans (125, 180, 180, 180, and 125 ft). The mountainous terrain required a complex alignment for the bridge. The geometry of this bridge includes a reverse horizontal curve alignment with spirals and a vertical alignment that includes a sag curve on a steep 8% grade.

Precast segments are being used for both the piers and superstructure with the intent of enabling this work to proceed simultaneously while the construction of foundations and temporary erection structures takes place at the site. The foundations require micropiles that vary in length due to variable geotechnical conditions. The erection of segments will be done from the top down for the piers and will use the balanced cantilever method for the superstructure.

The superstructure consists of 92 segments and the substructure consists of 20 segments. The typical superstructure segment has a constant depth of 9 ft 0 in. and a width of 36 ft 10 in. weighing 100 kips each. The top slab is transversely post-tensioned. The substructure segment widths vary from 10 ft 0 in. to 13 ft 8 in., are hollow, and will also be post-tensioned. Difficult site constraints of steep terrain and extremely limited access from only one end of the bridge prevents the contractor from erecting precast segments with traditional cranes and overhead erection trusses. A temporary trestle/falsework system, supporting an elevated rail system that will be used by a gantry crane to erect the bridge, is being constructed to gain access to the site and construct the bridge. The temporary trestle is supported by micropiles that will be cut down 2 ft below the ground line after the falsework is removed.

The last of the segments was cast in August. Erection of the segments will begin in October and is scheduled to be completed in spring 2012. Finally, a high-performance concrete overlay will be placed in early spring. The completion of this bridge will grant the contractors access to the other bridge sites on the “Missing Link” of the parkway. The Foothills Parkway target opening date for the public is 2016.

Gary Jakovich is division bridge engineer and Hratch (Richard) Pakhchanian is senior bridge design specialist, both with Eastern Federal Lands Highway in Sterling, Va.; and M. Myint Lwin is director, Office of Bridge Technology at the FHWA in Washington, D.C.
SAFETY AND SERVICEABILITY

Guidelines for Inspection and Acceptance of Epoxy-Coated Reinforcing Steel

by David McDonald, Epoxy Interest Group

Epoxy-coated reinforcing bars have been used to protect against chloride induced corrosion since 1973. The most commonly used bars are green and meet AASHTO M 284 (ASTM A775); however, certain agencies use purple or gray colored products that meet ASTM A934. Epoxy-coated reinforcing bars continue to be the most commonly specified and researched corrosion-resistant products.

Jobsite inspection of epoxy-coated reinforcing steel prior to concrete placement is critical to ensure that optimum corrosion protection is provided. The following provides an outline of procedures to minimize damage:

• Coated bars should be lifted using a spreader bar or at multiple pickup points to minimize sag and should never be dragged. Bare chains or cables should not be used for lifting and coated bars should be stored on timber cribbing.

• Forms should be oiled prior to placement of the reinforcing bars and bars should not be placed directly on the oiled forms, but rather, placed on epoxy-coated or nylon supports.

• Bars should be tied using coated tie wire.

• Bars must not be flame cut and may only be bent at the jobsite with the permission of the engineer. Only reinforcing bars meeting AASHTO M284 (ASTM A775) may be bent after coating.

• If mechanical splices are used, they should be epoxy-coated and welding should only occur with the permission of the engineer.

• Prior to concrete placement, bar spacing, clear cover, bar size, and bar type should be evaluated along with lap lengths. Bends should be inspected and not exhibit any unrepaired cracking or fractures and all damage should be repaired. If the bars exhibit greater than 2% damage in any 1 ft section, they may be rejected. Note that this limit does not include sheared or cut ends. Welds should also be cleaned and patched with repair materials.

• Avoid placing concrete hoses directly on the coated steel, as couplers may damage the coating as they are moved. A runway should also be considered. Concrete pump lines should be fitted with an “S” bend to prevent free fall of concrete directly onto the coated bars and plastic headed concrete vibrators should be used to consolidate the concrete.

• Bars that are partially cast in concrete, and then exposed for extended periods, should be protected against exposure to UV, salts, and condensation. If stored bars are exposed for more than 30 days, they should be covered with an opaque material that minimizes condensation.

Further information on the use and handling of epoxy-coated reinforcing steel is available in a document titled “Guidelines for Inspection and Acceptance of Epoxy-Coated Reinforcing Steel at the Jobsite” available at www.epoxyinterestgroup.org. This eight-page document provides procedures for inspection of epoxy-coated reinforcing steel during construction and prior to concrete placement, and is valuable to anyone involved in the placing and inspection of concrete containing epoxy-coated bars.

Standards
1. AASHTO M 284, Standard Specification for Epoxy-Coated Reinforcing Bars: Materials and Coating Requirements
2. ASTM A934, Standard Specification for Epoxy-Coated Prefabricated Steel Reinforcing Bars

David McDonald is managing director of the Epoxy Interest Group, Concrete Reinforcing Steel Institute in Schaumburg, Ill.
Third Edition of the **PCI Bridge Design Manual**

This manual is updated to conform to the fifth edition of the *AASHTO LRFD Bridge Design Specifications*, and the 2011 *Interim Revisions*. Featuring 11 new design examples, this manual provides solutions using various precast/prestressed concrete bridge beams and products. These examples illustrate the various new alternate code provisions including prestress losses, shear design, and transformed sections.

This first release of the third edition includes one new chapter — Chapter 1 on Sustainability and revised chapters, including: Chapter 2 on Materials; Chapter 3 on Production; Chapter 4 on Economy; Chapter 5 on Aesthetics; Chapter 6 on Preliminary Design with all new LRFD Preliminary Design Charts and tables; Chapter 7 on Loads; Chapter 8 on Design; Chapter 9 on Design Examples; and a completely rewritten Chapter 10 on Bearings explaining the new method B simplified approach.

This third edition is a must-have manual for all design and load-rating engineers, owner agencies, contractors, specifiers, precasters, and suppliers.

List Price ... $490.00
Member Price .. $245.00
Registered Manual Holders Upgrade $122.50
Student (electronic version only) $104.00
Concrete Bridges in NEW YORK STATE
by Matthew C. Royce, New York State Department of Transportation

NYSDOT started building prestressed concrete bridges in the 1950s.

Concrete bridges play a significant role in the transportation infrastructure of New York State. Since the early part of the twentieth century, methods for both designing and building concrete bridges have undergone many changes. Generally, concrete bridges have served the state well. There are some cases, however, where early methods that were used have resulted in deterioration.

The New York State Department of Transportation (NYSDOT) has developed, and is currently using, technology in concrete bridge design and construction that will significantly reduce corrosion-related deterioration. NYSDOT is in the forefront of utilizing the latest advancements in concrete technology such as high-strength, high-performance concrete (HSHPC), self-consolidating concrete (SCC), ultra-high-performance concrete (UHPC), and internal curing concrete (ICC) for building concrete bridges that are more durable as well as cost effective.

Reinforced Concrete Bridges

Many of New York State’s aesthetically pleasing open spandrel concrete arch bridges built in the first half of the twentieth century are still in service today and, with proper maintenance, should continue to be for quite some time. One such structure, currently under rehabilitation, is Route 5 over Eighteen Mile Creek in western New York State. This bridge was completed in 1931 and is expected to have at least an additional 25 years of service life after the current rehabilitation is completed. Based on the proven durability and aesthetic appeal of these structures, NYSDOT continues to build reinforced concrete arch bridges whenever appropriate. Two such bridges, recently completed, are Route 5S over Wallkill and Route 30 over Minekill. Both bridges have cast-in-place, reinforced concrete arches and precast, prestressed concrete superstructures, made using self-consolidating HSHPC, above the arch.

Even though concrete arch bridges are both durable and attractive, they are relatively expensive to build. NYSDOT built a significant number of less expensive, yet still attractive, reinforced concrete earth-filled arch frame bridges for grade separations during the construction of parkways during the mid-twentieth century. These bridges have been very durable and the vast majority of them are still in service. Some of these bridges have been recently replaced with adjacent precast, prestressed concrete box beams with curved soffits to replicate the bridges they replaced.

Prestressed Concrete Bridges

NYSDOT started building prestressed concrete bridges in the 1950s, with a few post-tensioned T-beam bridges. Most of the T-beam bridges have already been replaced due to the corrosion of the post-tensioning tendons—a result of insufficient grouting methods in use at that time. The grout, with high water content, left voids in the ducts, which when infiltrated by chloride contaminated deck drainage, led to significant corrosion of the post-tensioning tendons.

One remarkable bridge that was completed in 1960, I-81 over Oneida Lake, is worthy of special recognition. From the time of its completion until 2010, this bridge held the record for the longest main span in the world for a precast, prestressed concrete spliced girder bridge at 320 ft. The structure is in good condition overall except that the fascia girders have the bottom tendons corroded at locations where the girders were exposed to deck drainage. The weakened girders are being strengthened with external devices to ensure the bridge continues to serve the needs of the transportation network.

The Route 5S over Wallkill bridge uses cast-in-place, reinforced concrete arches with precast concrete spandrel columns, cap-beams, and a precast, prestressed concrete adjacent box beam superstructure. All precast components were made using self-consolidating HSHPC.
post-tensioning to restore their lost capacity. It is expected that this unique structure, which is eligible for entry into the registry of historic bridges will continue to be in service for many years after its rehabilitation.

Since the 1960s, pretensioned beams, predominantly adjacent box beam superstructures, have been the mainstay for concrete bridges in New York; however, some AASHTO I-beam bridges were also built. Adjacent box beam bridges are a very cost-effective solution for short-to-medium span bridges; they are particularly appropriate where superstructure depth is limited. These superstructures also provide a smooth bottom, which is beneficial for stream crossings with low freeboard. Until the early 1990s, these bridges utilized a partial-depth shear key between beams. These shear keys had a tendency to crack and these cracks reflected through the deck, allowing drainage containing deicing chemicals to leak through joints between beams. This leaking led to the exposure of the sides and bottoms of the beams which, made with conventional concrete of the time, had relatively high permeability compared to today’s HSHPC. Corrosive chemicals, mainly chlorides, seeped into the concrete resulting in corrosion of the prestressing strands and conventional reinforcement. A significant number of these bridges are nearing the end of their service life due to this problem and are expected to be replaced in the near future.

Full-Depth Shear Keys and Enhanced Concrete

Starting in the mid-1990s, NYSDOT introduced full-depth shear keys between the box beams, along with higher transverse post-tensioning forces and increased reinforcement in the 6-in.-thick, cast-in-place concrete decks over the beams. These changes significantly reduced the reflective cracking above the shear keys. Even though some random shrinkage-related hairline deck cracking persisted, leakage through joints between the beams was practically eliminated. In order to further improve the durability of the prestressed concrete beams, NYSDOT started using high-strength (10 ksi), high-performance concrete for all precast, prestressed bridge components. This higher performance with regard to durability includes low permeability, better freeze-thaw resistance, and better scaling resistance. In addition, calcium nitrite corrosion inhibitor at a rate of 5.4 gal/yd³ is being used in the concrete to improve the corrosion resistance even when some chloride manages to permeate the concrete. As additional insurance, all the beams are sealed with penetrating type sealers (silane) to stop any moisture and chloride intake by the beams via microcracks in the concrete. Overall, prestressed concrete beams used in New York today have the highest corrosion resistance possible, while still using conventional steel reinforcement.

NYSDOT has also been using high-performance concrete (HPC) in cast-in-place applications mainly for concrete bridge decks, for the last 15 years. The main focus is durability, rather than high strength. With the use of epoxy-coated reinforcement, along with HPC, these decks are expected to last much longer than decks with conventional concrete. One area of concern for NYSDOT, as well as many other states, is cracking of the concrete in the cast-in-place decks. NYSDOT has two ongoing experimental programs in this area. Based on various completed studies, the cause for these cracks has been determined to be tension in concrete resulting from restrained autogenous, drying, and thermal shrinkage.

Deck with Internal Curing Concrete

NYSDOT has recently completed 10 bridge decks with ICC. The concrete mix is produced with a 30% substitution of fine aggregate with saturated lightweight aggregate fines which act as internal storage for moisture. The primary benefit of the mixture is that the autogenous shrinkage of concrete will be nearly eliminated and thereby reduce the tension in the hardening concrete deck. Evaluations on the decks built with ICC are ongoing and the results will be published at the conclusion of the study.
Low Cement Concretes
Another study that has been started is on concrete decks made with lower cement content mixes. The lower cement content is made possible through the adjustment in large aggregate gradation with the primary benefit being lower heat of hydration. This reduces the tension in decks resulting from restrained thermal and drying shrinkage. That study is expected to be completed in 2 to 3 years, and should the results prove positive for both studies, development of concrete mixes incorporating the beneficial aspects of both approaches is anticipated.

Accelerated Bridge Construction
NYSDOT is at the forefront of developing enabling technologies for accelerated bridge construction (ABC). The use of precast concrete bridge elements is an efficient way to accelerate bridge replacements; however an area of concern is the durability of the joints between the members. NYSDOT, with the assistance of the Federal Highway Administration and the concrete industry, has developed and tested joints using UHPC. These joints need only be 6 in. wide since the reinforcing bars up to size No. 6 can be fully developed within a joint of that size. These joints are also highly durable and crack resistant. The first use of the UHPC joint was for the superstructure for Route 31 over Canandaigua Outlet in Lyons, N.Y. With a short schedule, this project used deck bulb tees (DBT) with UHPC joints between them. It was completed in 2008 (for more information, see ASPIRE™, Fall 2009, page 28). There are two ongoing projects utilizing DBTs and

Segmental Concrete Bridges in New York
The 2300-ft-long, I-390 twin bridges over Genesee River were among the first post-tensioned segmental bridges in the country. These cast-in-place segmental bridges were built using the balanced cantilever method during the 1970s. The two bridges are performing very well with minimal maintenance. NYSDOT continues to use segmental concrete bridge construction where appropriate and cost effective. In addition to the concrete segmental structure for the JFK light rail link built under public-private partnership, NYSDOT completed the Marcy Avenue ramp to Williamsburg Bridge in 2001 and the Roslyn Viaduct in 2011. For the Roslyn Viaduct, precast, segmental match-cast concrete construction was used for the piers, in addition to the balanced cantilever superstructure (see ASPIRE Fall 2009, page 32). Both superstructure and substructure used self-consolidating HSHPC with corrosion inhibitors. The grouting of the post-tensioning ducts, performed by American Segmental Bridge Institute-certified technicians, under stringent quality control-quality assurance and using pre-packaged, no-bleed grout is expected to perform well, long into the future.

Conclusion
In general, concrete bridge building in New York State is a thriving industry. The concrete bridges that are being built today are focused on durability. Accelerated construction, at reasonable cost and with equal or better durability compared to conventional construction, is another area where the NYSDOT has made significant strides.

Mathew C. Royce is associate civil engineer with the New York State Department of Transportation in Albany, N.Y.

For more information on New York State’s bridges, visit www.nysdot.gov/index.
Silica Fume Association

The Silica Fume Association (SFA), a not-for-profit corporation based in Delaware, with offices in Virginia and Ohio, was formed in 1998 to assist the producers of silica fume in promoting its usage in concrete. Silica fume, a by-product of silicon and ferro-silicon metal production, is a highly-reactive pozzolan and a key ingredient in high performance concrete, dramatically increasing the service-life of structures.

The SFA advances the use of silica fume in the nation’s concrete infrastructure and works to increase the awareness and understanding of silica fume concrete in the private civil engineering sector, among state transportation officials and in the academic community. The SFA’s goals are two-fold: to provide a legacy of durable concrete structures and to decrease silica fume volume in the national waste stream.

Some of the recent projects completed by the SFA, under a cooperative agreement with the Federal Highway Administration (FHWA), include:

- The publication of a *Silica Fume User's Manual* — the manual is a comprehensive guide for specifiers, ready mixed and precast concrete producers, and contractors that describes the best practice for the successful use of silica fume in the production of high performance concrete (HPC).
- The introduction of a Standard Reference Material (SRM)® 2696 Silica Fume for checking the accuracy of existing laboratory practices and to provide a tool for instrument calibration. This SRM is available from the National Institute of Standards and Technology (NIST).

A much anticipated research program nearing completion by the SFA is the testing of in-place silica fume concrete under service conditions. At the conclusion of this research the results will demonstrate the benefit of silica fume concrete’s unparalleled long-term performance. For more information about SFA, visit www.silicafume.org.
King County, Wash., offers spectacular scenery with many rivers running through a densely populated developed landscape. This creates challenges for maintaining bridges. Most of the bridges span salmon-bearing waterways, which can’t be disrupted during spawning season. That “fish window” limits construction of most bridges from June until early October, marking the number-one challenge to keeping roadways open and infrastructure up to date.

The county replaced 33 bridges in the 14 years between 1995 and 2008. Another nine bridges were rebuilt, adding more construction. These nine projects were all uniquely able to make use of the existing structure. Seldom does such rebuilding make sense. Due to our high seismic zone, foundations often must be brought up to code, at which point it’s difficult to save the rest of the bridge and achieve any life-cycle cost savings.

In 2008, the county also completed a 14-year, $20 million, comprehensive Bridge Seismic Retrofit Program, upgrading 115 of the county’s 184 bridges, five of which are co-owned with neighboring cities.

The “fish window” restriction requires any work done over the waterway, including girder placement and deck placements, to be completed during that period. The key concern is concrete spills into the water, which can kill fish in an instant. As a result, we no longer build bridges with piers in the water, leading us to continually seek new ways to span the waterways. One approach has been to extend concrete clear-span designs to 200 ft or more. A project to be completed in November 2011 features a 210-ft span with spliced precast concrete Washington State supergirders, our longest simple-span concrete bridge to date.

Replacing longer spans also requires dramatically increased deck area. An example is the new York Bridge, a partnership between the county and the city of Redmond, which replaced a simple-span, narrow 50-year-old bridge vulnerable to earthquake damage. The 220-ft-long, four-span, precast, prestressed concrete replacement features Washington State W42G girders with a shallow cast-in-place concrete arch and inclined columns supporting two center spans.

The project won the Silver Award for Structural Systems from the American Council of Engineering Companies and features artwork by Cliff Garten, paid for by King County and Redmond’s public-art programs. In noting the bridge’s consistency with other bridges in the area, the judges cited the design’s ability to overcome challenges that included soft soil, an unusual arch design, and concern for the environment and neighbors.

The county continues to look for creative approaches to meeting its challenges. Because detours can be significant, we continually look for techniques that will speed construction, such as geosynthetic reinforced abutments that can replace drilled shafts. Those concepts can minimize user costs and help us to complete work inside the “fish window.”

Jim Markus is managing engineer for the King County Road Services Division of the King County Department of Transportation in Washington State.
Your Road & Bridge Source

We’ve long been a leader in road and bridge product innovation. But Meadow Burke’s newest revolutions do more than greatly reduce labor costs and construction time. Through innovative engineering and product design, we make it possible for you to build stronger, sustainable road & bridge concrete structures.

Meadow Burke. Innovating concrete construction

To learn more, call toll free at 877.518.7665 or visit www.MeadowBurke.com

November 7-8
2011 Annual ASBI Convention
Washington, D.C.

Promoting Segmental Bridge Construction
in the United States, Canada and Mexico

April 16-17
2012 Grouting Certification Training
J.J. Pickle Research Campus
University of Texas, Austin

For Membership Information or for further details visit www.asbi-assoc.org
Concrete Connections is an annotated list of websites where information is available about concrete bridges. Fast links to the websites are provided at www.aspirebridge.org.

IN THIS ISSUE

www.dullesmetro.com
Visit this website for more details on the Washington, D.C. to Dulles Airport Metrorail project described on page 26. Click on Construction for a series of photographs.

www.mfe-union-to-brown.com
This project website contains information about the Uniontown to Brownsville Expressway project of the Pennsylvania Turnpike Commission. Click on the Photos tab for two Monongahela River Bridge construction cameras, a video, and the latest photographs for Section 51H. (See page 14.)

www.dot.ca.gov/dist8/projects/san_bernardino/sr18bear/
This California Department of Transportation website provides more details about the Big Bear Bridge described on page 22.

www.fh8.fhwa.dot.gov/
More information about Federal Lands Highway described on page 42 is available at this website.

www.arc-competition.com/welcome.php
This is the official site for ARC—the International Wildlife Crossing Infrastructure Competition. ARC selected five teams to develop concept designs for a wildlife crossing at Colorado’s West Vail Pass along I-70. The designs, including the winning entry described on page 12, can be viewed at this website.

Environmental
http://environment.transportation.org/
The Center for Environmental Excellence by AASHTO’s Technical Assistance Program offers a team of experts to assist transportation and environmental agency officials in improving environmental performance and program delivery. The Practitioner’s Handbooks provide practical advice on a range of environmental issues that arise during the planning, development, and operation of transportation projects.

www.environment.transportation.org/teri_database
This website contains the Transportation and Environmental Research Ideas (TERI) database. TERI is the AASHTO Standing Committee on Environment’s central storehouse for tracking and sharing new transportation and environmental research ideas. Suggestions for new ideas are welcome from practitioners across the transportation and environmental community.

Sustainability
http://sustainablehighways.org
The Federal Highway Administration has launched an internet-based resource designed to help state and local transportation agencies incorporate sustainability best practices into highway and other roadway projects. The Sustainable Highways Self-Evaluation Tool, currently available in beta form, is a collection of best practices that agencies can use to self-evaluate the performance of their projects and programs to determine a sustainability score in three categories: system planning, project development, and operations and maintenance.

If you have never understood the Federal Surface Transportation Authorization and the Highway Trust Fund, this primer may help you.

Bridge Technology
www.aspirebridge.org
Previous issues of ASPIRE™ are available as pdf files and may be downloaded as a full issue or individual articles. Information is available about subscriptions, advertising, and sponsors. You may also complete a reader survey to provide us with your impressions about ASPIRE. It takes less than 5 minutes to complete.

www.nationalconcretebridge.org
The National Concrete Bridge Council (NCBC) website provides information to promote quality in concrete bridge construction as well as links to the publications of its members.

www.hpcbridgeviews.org
This website contains 68 issues of HPC Bridge Views, an electronic newsletter published jointly by the FHWA and the NCBC to provide relevant, reliable information on all aspects of high-performance concrete in bridges. Sign up at this website for a free subscription.

The U.S. Federal Highway Administration’s Office of International Programs has released a report titled Assuring Bridge Safety and Serviceability in Europe. The report describes a scanning study of Europe that focused on identifying best practices and processes designed to help assure bridge safety and serviceability. The scan team gathered information on safety and serviceability practices and technologies related to design, construction, and operations of bridges. A summary of the study was provided in ASPIRE Winter 2010, page 50.

NEW www.trb.org/Publications/PubsNCHRPresearchResultsDigests.aspx
Research Results Digest 355 summarizing key findings from NCHRP Project 10-71 titled Cast-in-Place Concrete Connections for Precast Deck Systems is now available from this National Cooperative Highway Research Program website.

www.fhwa.dot.gov/Bridge/ABC
Visit this website for more information about the FHWA Accelerated Bridge Construction Program.

www.fhwa.dot.gov/bridge/abc/prefab.cfm
If you missed the FHWA webinars about Prefabricated Bridge Elements and Systems held in four sessions on August 16 and 17, 2011, the webinar is now available at this website. Under Webinars, click on one of the sessions. The concrete industry role is included in Session 3.

NEW www.wsdot.wa.gov/research/reports/fullreports/759.1.pdf
The Washington State Department of Transportation has published a report titled Investigating Longevity of Corrosion Inhibitors and Performance of Deicer Products under Storage or after Pavement Application that is available at this website.
PCI Announces Two State-of-the-Art Reports

Adjacent Box Beam Bridges

The Precast/Prestressed Concrete Institute is proud to share a new publication on adjacent box beam bridges. NCHRP Synthesis number 393 discusses issues with the longitudinal joint and overlay. This 12 chapter report offers suggested details, practices and case studies. The document also includes a summary of conclusions addressing design, fabrication and construction.

[SOA-02-2011]

State-of-the-Art Report Pricing
List Price... $70.00
Member Price..................................... $35.00

Bridge Deck Panels

The new Bridge Deck Panel Report is a state-of-the-art guide for selecting, designing, detailing, and constructing precast full-depth deck panels for bridge construction.

The report consists of four parts:
1. An introduction to the relatively new technology of full-depth precast bridge deck panel systems
2. Information on typical practice including transverse and longitudinal design and including design examples
3. Examples of successful detailing including transverse joints, horizontal shear connection, leveling and temporary support, and haunch details between beam and deck
4. Information on the production, handling, and construction of full-depth precast deck panels including quality control, construction operations, and wearing and protection systems

This informative report is relevant for new bridge deck construction or bridge deck replacement.

[SOA-01-1911]
Buyers Guide

The companies listed on these pages have supported ASPIRE™ magazine during 2011. Each produces a high-quality product or service targeted to the bridge industry and is worthy of your consideration. In choosing ASPIRE as the way to communicate with you, they show enormous confidence in us.

These companies share in the significant success achieved by ASPIRE. Advertisers put their money where their mouths are, and they can rightfully be proud of ASPIRE's success and our ambitious plans for 2012. They enable us to move ahead with confidence to better serve our readers.

Just as important, the advertisers create valuable messages for our readers. Their announcements and product information supplement our own presentations to keep readers current with new ideas.

Whenever an opportunity arises, please contact an ASPIRE advertiser, ask them for more information, and thank them for their investment in the bridge community. For an easy way to make a contact, go to www.aspirebridge.org and select “Advertisers.” Clicking on any listing will take you to their home page.

We appreciate their support, and yours, for making ASPIRE the most read and talked about bridge magazine!

<table>
<thead>
<tr>
<th>Description</th>
<th>Address/Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASF, The Chemical Company</td>
<td>889 Valley Park Drive, Shakopee, MN 55379, 800.433.9517</td>
</tr>
<tr>
<td>Bentley</td>
<td>685 Stockton Dr, Exton, PA 19341, 800.BENTLEY</td>
</tr>
<tr>
<td>Bridgescape, LLC</td>
<td>5425 Vantage Point Road, Columbia, MD 21044, 301.490.6088</td>
</tr>
<tr>
<td>Central Atlantic Bridge Associates</td>
<td>1042 North 38th St, Allentown, PA 18104, 610.395.2338</td>
</tr>
<tr>
<td>CME Associates</td>
<td>333 East River Drive, Ste. 400, East Hartford, CT 06108, 860.290.4100</td>
</tr>
<tr>
<td>DYWIDAG-Systems International USA</td>
<td>320 Marmon Dr, Bolingbrook, IL 60440, 630.739.1100</td>
</tr>
<tr>
<td>ENERPAC</td>
<td>6100 N. Baker Rd, Milwaukee, WI 53029, 262.781.6600</td>
</tr>
<tr>
<td>Figg</td>
<td>424 North Calhoun Street, Tallahassee, FL 32301, 850.224.7400</td>
</tr>
<tr>
<td>Flaticon</td>
<td>10188 E I-25 Frontage Rd, Firestone, CO 80504, 303.485.4050</td>
</tr>
<tr>
<td>GRL Engineers</td>
<td>30725 Aurora Road, Cleveland, OH 44139, 216.831.6131</td>
</tr>
<tr>
<td>Hamilton Form Company</td>
<td>7009 Midway Road, Fort Worth, TX 76118, 817.590.2111</td>
</tr>
<tr>
<td>Hardesty & Hanover</td>
<td>1501 Broadway, New York, NY 10036, 212.944.1150</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>ADDRESS/PHONE</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Headwaters Resources manages and markets CCPs, including fly ash. Fly ash use improves</td>
<td>10653 S. River Front Parkway, Ste. 300</td>
</tr>
<tr>
<td>concrete performance and creates significant benefits for our environment.</td>
<td>South Jordan, UT 84095</td>
</tr>
<tr>
<td>Helser Industries designs and manufactures steel forms for producing precast and</td>
<td>10750 SW Tualatin Rd, P.O. Box 1569</td>
</tr>
<tr>
<td>prestressed concrete components for numerous commercial applications.</td>
<td>Tualatin, OR 97062</td>
</tr>
<tr>
<td>Holcim is one of the world’s leading suppliers of cementitious materials including</td>
<td>201 Jones Road</td>
</tr>
<tr>
<td>our eco-efficient Envirocore products delivering innovation and greener building</td>
<td>Waltham, MA 02451</td>
</tr>
<tr>
<td>solutions to your customers.</td>
<td>888.646.5246</td>
</tr>
<tr>
<td>LARSA Inc.’s software for bridge analysis and design addresses specialized needs of</td>
<td>Melville Corporate Center</td>
</tr>
<tr>
<td>a variety of bridge structures, including cable, segmental, curved, box, and other</td>
<td>105 Maxess Rd., Ste. 115N</td>
</tr>
<tr>
<td>types, and is a standard in leading U.S. firms.</td>
<td>Melville, NY 11744</td>
</tr>
<tr>
<td>Mapei a global corporation, has been supplying residential and major commercial projects</td>
<td>1144 E. Newport Center Drive</td>
</tr>
<tr>
<td>with total installation solutions for tile and stone, floor covering, and decorative</td>
<td>Deerfield Beach, FL 33442</td>
</tr>
<tr>
<td>concrete as well as concrete restoration for 75 years.</td>
<td>800.426.2734</td>
</tr>
<tr>
<td>Meadow Burke is a premier manufacturer and distributor for the concrete construction</td>
<td>531 S. US Highway 301</td>
</tr>
<tr>
<td>industry serving architects, engineers, and contractors with a superior line of</td>
<td>Tampa, FL 33619</td>
</tr>
<tr>
<td>concrete reinforcing products, concrete forming accessories, road and bridge products,</td>
<td>813.248.1944</td>
</tr>
<tr>
<td>and products for precast construction.</td>
<td></td>
</tr>
<tr>
<td>Mi-Jack Products Inc. is recognized as an industry leader and innovator in Travelift®</td>
<td>3111 W. 167th Street</td>
</tr>
<tr>
<td>and Translift™ rubber tire gantry crane manufacturing, sales, service, and support</td>
<td>Hazel Crest, IL 60429</td>
</tr>
<tr>
<td>Olson Engineering Inc. has provided state-of-the-art structural and infrastructure</td>
<td>708.596.5200</td>
</tr>
<tr>
<td>NDT condition assessment services since 1985. The staff of Olson Engineering has</td>
<td></td>
</tr>
<tr>
<td>been carefully assembled to have world class expertise in NDT&E consulting services.</td>
<td></td>
</tr>
<tr>
<td>PB is a leader in infrastructure development around the world, dedicated to meeting the</td>
<td>One Penn Plaza</td>
</tr>
<tr>
<td>needs of clients and communities.</td>
<td>New York, NY 10119</td>
</tr>
<tr>
<td>Poseidon Barge Corporation manufactures, sells, and rents Portable Sectional Barges to</td>
<td>3101 New Haven Ave.</td>
</tr>
<tr>
<td>the Heavy Highway and Marine Construction Industry. We have distribution in Indiana,</td>
<td>Fort Wayne, IN 46803</td>
</tr>
<tr>
<td>Arkansas, Florida, California, and Massachusetts.</td>
<td>866.992.2743</td>
</tr>
<tr>
<td>The Reinforced Earth Company has forty years of experience designing and supplying</td>
<td>8614 Westwood Center Dr., Ste. 1100</td>
</tr>
<tr>
<td>materials to contractors for retaining walls, sound walls, and precast arches used</td>
<td>Vienna, VA 22182</td>
</tr>
<tr>
<td>in civil engineering applications.</td>
<td>800.446.5700</td>
</tr>
<tr>
<td>SPLICE SLEEVE. The original grout-filled mechanical splice for rebar used for moment-</td>
<td>38777 W 6th Mile Rd., Ste. 106</td>
</tr>
<tr>
<td>resisting connections in precast concrete.</td>
<td>Livonia, MI 48152</td>
</tr>
<tr>
<td>Transpo Industries Inc is a manufacturer of roadway safety products—breakaway supports</td>
<td>949.861.8393</td>
</tr>
<tr>
<td>and specialty polymer concrete materials for the rehabilitation, maintenance and</td>
<td></td>
</tr>
<tr>
<td>preservation of bridge and concrete structures—since 1968.</td>
<td></td>
</tr>
<tr>
<td>Beijing Wowjoint is a leading provider of customized heavy duty lifting and carrying</td>
<td>1055 Colorado Blvd., Ste. 50</td>
</tr>
<tr>
<td>machinery used in large scale infrastructure projects such as railway, highway, and</td>
<td>Pasadena, CA 91106</td>
</tr>
<tr>
<td>bridge construction. Wowjoint’s main product lines include launching gantries, tire</td>
<td>530.475.2793</td>
</tr>
<tr>
<td>trolleys, special carriers, and marine hoists.</td>
<td></td>
</tr>
</tbody>
</table>
The fatigue limit states of Article 5.5.3 of the AASHTO LRFD Bridge Design Specifications include two distinct checks: one for metallic reinforcement in members subjected to tension, the other for concrete of fully prestressed concrete members subjected to compression.

The fatigue limit-state function for metallic reinforcement in concrete members subjected to tension is:

\[\gamma(\Delta f) \leq (\Delta F)_{TH} \]

where:

- \(\gamma \) = load factor specified for the Fatigue I load combination discussed in Part 1 of this article (ASPIRE™, Summer 2011)
- \(\Delta f \) = force effect, live load stress range due to the passage of the fatigue truck, as specified in LRFD Article 3.6.1.4
- \((\Delta F)_{TH} \) = constant-amplitude fatigue threshold for the metallic reinforcement being considered

As discussed in the previous article, the constant-amplitude threshold is a threshold value of stress range below which the metallic reinforcement will not crack during the expected life of the bridge. In this case, metallic reinforcement in a concrete member is said to theoretically exhibit an infinite fatigue life.

The metallic reinforcement to be checked for fatigue includes nonprestressed reinforcing bars, prestressing strands, and welded or mechanical splices of reinforcement. It is of paramount importance to point out that fully prestressed concrete components designed to have an extreme fiber tensile stress due to the Service III Limit State within the tensile stress limit specified in LRFD Table 5.9.4.2.2-1, are specifically exempted from the fatigue check of their metallic reinforcement. Further, for reinforced concrete members, fatigue needs to be considered only in regions where the permanent compressive stress is less than the maximum tensile live-load stress resulting from the Fatigue I load combination; in other words, only if the Fatigue I live-load stress overcomes any permanent compression due to dead load and prestressing.

Reinforcing Bars

For nonprestressed reinforcing bars, the constant-amplitude fatigue threshold specified in LRFD Article 5.5.3.2 is:

\[(\Delta F)_{TH} = 24 - 0.33f'_{min} \]

where \(f'_{min} \) = minimum live-load stress resulting from the Fatigue I load combination, combined with the more severe stress from either the permanent loads or the permanent loads, shrinkage, and creep-induced external loads; positive if tension, negative if compression.

For welded wire reinforcement without a cross weld in the high-stress region:

\[(\Delta F)_{TH} = 24 - 0.33f'_{min} \]

For welded wire reinforcement with a cross weld in the high-stress region:

\[(\Delta F)_{TH} = 16 - 0.33f'_{min} \]

For prestressing tendons not satisfying the exemption above, the constant-amplitude fatigue thresholds specified in LRFD Article 5.5.3.3 are:

\[(\Delta F)_{TH} = 18.0 \text{ ksi for radii of curvature in excess of 30.0 ft.} \]

\[(\Delta F)_{TH} = 10.0 \text{ ksi for radii of curvature not exceeding 12.0 ft.} \]

For radii of curvature between 12.0 and 30.0 ft, linear interpolation is permitted.

Finally, for welded or mechanical splices, the constant-amplitude fatigue thresholds are given in LRFD Table 5.5.3.4-1.

Concrete

For prestressing tendons not satisfying the exemption above, the constant-amplitude fatigue thresholds specified in LRFD Article 5.5.3.3 are:

\[(\Delta F)_{TH} = 18.0 \text{ ksi for radii of curvature in excess of 30.0 ft.} \]

\[(\Delta F)_{TH} = 10.0 \text{ ksi for radii of curvature not exceeding 12.0 ft.} \]

For radii of curvature between 12.0 and 30.0 ft, linear interpolation is permitted.

Finally, for welded or mechanical splices, the constant-amplitude fatigue thresholds are given in LRFD Table 5.5.3.4-1.

The fatigue limit-state function for concrete of fully prestressed concrete members subjected to compression is specified in LRFD Article 5.5.3.1 as:

\[\text{Fatigue I compressive stress} + \frac{1}{2}(\text{effective prestress} + \text{permanent loads}) \leq 0.40f'_{c} \]

Previously, this compressive stress-limit check was not explicitly specified as a fatigue check.

A future article will discuss the determination of \(\Delta f \), the force effect, live load stress range due to the passage of the fatigue truck, in more detail.

Editor's Note

If you would like to have a specific provision of the AASHTO LRFD Bridge Design Specifications explained in this series of articles, please contact us at www.aspirebridge.org.
CREATING LANDMARKS

TYLIN INTERNATIONAL

engineers | planners | scientists | www.tylin.com
POSEIDON BARGE

STANDARD EQUIPMENT
OVER OUR COMPETITION:

- 20,000 PSF POINT LOAD CAPACITY
 (PATENT PENDING)
- ZINC ANODES
- HATCHES FOR EASY INTERIOR INSPECTION
- WATER BALLAST CAPABILITIES
- INTERIOR RUST INHIBITOR COATING

- HAUL 2-40'x10'x5' UNITS / TRUCK
- HAUL 2-40'x10'x5' UNITS / TRUCK
- HAUL 2-40'x10'x5' UNITS / TRUCK

COST SAVINGS EVERYTIME
YOU MOBILIZE TO AND FROM THE JOB SITE!!

Mobilization Cost Savings:

- 8 - 40'x10'x 5' Barges
- 2 - 20' x 10' x 5' Barges
- 2 - 40' x 18' Spuds with pocket
- DBL Drum Winch & Accessories
- 300 MILES, 2 STATES

POSEIDON BARGE
5 - STEPDECKS FOR BARGES; $7,250
TOTAL ROUNDTRIP: $14,500.00

COMPETITION:
8 - TRUCKS; $14,400.00
TOTAL ROUNDTRIP: $28,800.00

YOU SAVE $14,300.00
ON EVERY PROJECT!!

WHY WOULD YOU CONSIDER USING ANYONE ELSE?

POSEIDON BARGE CORPORATION, 3101 NEW HAVEN AVE, FORT WAYNE, IN 46803
PH: 866-992-2743 FX: 260-424-8635 EMAIL: INFO@POSEIDONBARGE.COM WEB: WWW.POSEIDONBARGE.COM

STOCK LOCATIONS: FORT WAYNE, IN; BLYTHEVILLE, AR; LK. PANASOFFKEE, FL; NEW BEDFORD, MA; VALLEYS, CA; ROCKINGHAM, NC; HOUSTON, TX; KAPOLEE, HI; DEALER SEATTLE, WA