READER RESPONSE

Editor,

John Crigler, President
VSL
Hanover, Md.

[Editor’s Response]

Thanks, John, for the note. It is a great team effort by all of us (association staff and volunteers). Association staff work hard to get creditable data into the hands of decision makers, but the volunteer committees have to carry the biggest load of creating the knowledge. And thus, “those that show up help make the rules.”

Editor,

Were long-term dead load deflections a consideration during the “Evaluation of Common Design Policies for Precast, Prestressed Concrete I-Girder Bridges” described in the article in the Winter 2013 issue of ASPIRE™? If so, what criteria were used? If not, why not?

J. Doughty
Parsons Brinkerhoff
Raleigh, N.C.

[Author’s Response]

Long-term dead load deflections were not considered in the analyses. The study was intended only to identify the relative sensitivity of three selected design policies over a wide range of span lengths, girder depths, girder spacings, etc. In actual design, some of the design outcomes used in the study may be disqualified for other reasons. However, in the authors’ opinion, such disqualifications would not change the basic conclusions with respect to the relative sensitivity of the selected design policies.

Richard Brice and Bijan Khaleghi
Washington State Department of Transportation
Olympia, Wash.

Stephen J. Seguirant
Concrete Technology Corp.
Tacoma, Wash.

Editor,

The Perspective article regarding design policies for I-Girder bridges is very enlightening. Although no specific cost data are included, the implication is that substantial additional construction cost is incurred when using the more conservative standards. However, I expect that the actual cost differential is quite reasonable, especially when all life-cycle costs are included. The cost story would make a good follow-up article.

Stewart Gloyd
Olympia, Wash.

[Author’s Response]

Cost analyses were beyond the scope of the study performed, and would take significant effort to assemble. However, the authors agree that the data in the article should not be extrapolated to imply substantial cost increases due to the use of more conservative design policies. WSDOT employs all three conservative policies in its standard design practice, but still finds that prestressed concrete girder bridges are the most economical, both from a first cost and life-cycle perspective.

Richard Brice, Bijan Khaleghi, and Stephen J. Seguirant

B R I D G E D E S I G N M A N U A L

3rd Edition, First Release

The third edition of the PCI Bridge Design Manual, now available at http://www.pci.org/epubs is compatible with a variety of devices, including PCs, Macs, iPads, and e-readers. This up-to-date reference complies with the fifth edition of the AASHTO LRFD Bridge Design Specifications through the 2011 interim revisions and is a must-have for everyone who contributes to the transportation industry.

The PCI State-of-the-Practice Report on

PreCast/Prestressed
Adjacent Box Beam Bridges

This report (SOP-02-2012) presents the state-of-the-art practice on adjacent precast, pretensioned adjacent box-beam bridges. This report is relevant for Accelerated Bridge Construction, new bridge construction, or superstructure replacement projects.

The PCI State-of-the-Art Report on

Full-Depth Precast Concrete Bridge Deck Panels

The PCI State-of-the-Art Report on Full-Depth Precast Concrete Bridge Deck Panels (SOA-01-1911) is a report and guide for selecting, designing, detailing, and constructing precast concrete full-depth deck panels for bridge construction. This report is relevant for new bridge construction or bridge-deck replacement projects.

The PCI State-of-the-Art Report on

Curved Precast Concrete Bridges

This report details the application of curved precast concrete bridge design, fabrication, construction techniques, and considerations through the study of 12 related projects. The document was written and intended to provide bridge owners, designers, fabricators, and engineers an up-to-date reference in developing precast concrete bridge solutions for curved geometric situations.

www.pci.org/epubs