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In the Winter 2024 issue of ASPIRE®, we introduced a 
potential strategy based on live-load factor calibration and 

reliability principles to allow truck platoons to increase truck 
weights safely. The premise of this work is that trucks are and 
will become smarter and will achieve the ability to drive long 
distances autonomously. With such intelligence, these trucks 
will likely be able to report their axle weights and spacings and 
control their relative headways. 

This article uses an example of a simple-span, concrete 
T-beam bridge with conventional reinforcment to review how 
computations might be used to support platoon-permit loads 
being larger than legal loads. A forthcoming article will expand 
these concepts to the more complex case of pretensioned 
concrete girder bridges, and the details related to structural 
reliability.

Example Bridge
Figure 1 shows a typical six-girder, conventionally reinforced 
concrete T-beam bridge and gives the cross-section properties for 
a single girder with the composite concrete deck. This bridge was 
selected to provide computations that are easy to follow. For more 
details, refer to Barker and Puckett’s1 discussion of a similar bridge. 

The bridge is statically determinate. The load factors and live-
load distribution factors are in accordance with the American 
Association of State Highway and Transportation Officials’ 
AASHTO LRFD Bridge Design Specifications;2 self-weight and 
future wearing-surface loads are considered, but the barrier 
weight was neglected for simplicity. For the sake of brevity, 
fatigue and shear are not considered in this example.

Table 1 shows the calculated flexural moments used in the 
Service I and Strength I limit states listed in Table 2, as well as 
the calculated cracking-moment check. The usual stress-block 
approach is used to determine the moment capacity ϕMn. The 
example design used an area of reinforcing steel to exactly 
satisfy the Strength I limit state; that is, the performance ratio 
PR = 1 for Strength I (PR ≤ 1 indicates that the requirements 
of the limit state are met). The Service I limit state has a PR of 
approximately 1.0 using a resistance limit of 0.6 fy. However, the 
analysis illustrates that the section is expected to crack under the 
design service load.

The flexural strength Mn is 1504 ft-kip. A quick sensitivity 
analysis demonstrates the effects of fc  and fy on this 
computation. If fc  increases from 4 ksi to 6 ksi (that is, 1.5 
times), Mn increases by 1.01 times to 1519 ft-kips. However, if 
fy increases by 1.5 times to 90 ksi, Mn increases by 1.48 times 
to 2222 ft-kips. Although this behavior is well known, it is 
important to note that Mn varies almost linearly with As or fy. 
From a practitioner’s perspective, both As and fy are perceived 
as deterministic because uncertainties have been integrated 
into load and resistance factors. In reality, fy is significantly more 
influential than As on the reliability index β, because fabrication 
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Figure 1. Example bridge. All Figures: University of Nebraska.

Table 1. Flexural moments

Parameter Example Comment

Mu , ft-kip 1360 1.25MDC + 1.5 MDW + 1.75MdistIM

Mservice , ft-kip 856 1.0MDC + 1.0MDW + 1.0MdistIM

Table 2. Limit-state and cracking checks

Parameter Example Comment

Service I Very close to optimal design

fs , ksi 35.6 Sum of steel stresses due to all loadings

fallow , ksi 36 0.6fy

Performance ratio, PR 0.99 PR = 35.6/36 ≤ 1; OK

Strength I Optimally designed

Mn , ft-kip 1504 T × (lever arm)

ϕMn , ft-kip 1354 ϕ = 0.9

PR 1.0 PR = 1360/1354 = 1; OK

Cracking

Mcr , ft-kip 174 fr × Igross/Xbar

1.2Mcr , ft-kip 209 ϕMn ≥ 1.2Mcr ; OK

PR 4.1 > 1 PR = 856/209 = 4.1; definitely cracks
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tolerances result in reinforcing steel bar areas with high accuracy 
(bias λ practically equal to 1) and high consistency (coefficient 
of variation V close to 0). On the other hand, actual steel yield 
strength is routinely higher than the nominal value used to 
calculate strength, and the variability of yield strength from one 
bar to the next can be greater than the variability of the area 
because bars may be produced from different heat numbers or 
mills.

Reliability Analysis
In terms of statistics, all design parameters have bias λ and 
coefficient of variation V. Bias factors are ratios of nominal 
values to expected mean values. For example, if samples of 
reinforcing bar with a nominal fy of 60 ksi are taken from the 
field to a lab and subjected to tension testing, the samples 
would likely have a mean of approximately λ(fy) = 1.14(60) 
= 68.4 ksi. The standard deviation σR is determined from the 
product of the mean and VR, as VR(68.4) = 0.08(68.4) = 5.47 ksi. 
Table 3 provides the statistical data used in this example. Nowak 
and Collins3 provide a general discussion of structural reliability. 

The following equations calculate the mean values for Strength I 
resistance and load effects. Coefficients of variation scale these 

mean values to determine standard deviations.

R = RRλ n = 1.14(1504) = 1715 R = VR R = 0.08(1715) = 137.2σ

QDC = DCQDCn = 1.05(247) = 259λ DC = VDC R = 0.1(259) = 25.9σ

QDW = DWQDWn = 1.0(56) = 56λ DW = VDW R = 0.25(56) = 14.0σ

QLL = LLQLLn = 1.2(553) = 664λ LL = VLL R = 0.2(664) = 132.8σ

The limit-state function is defined as:

g(R,Q) = R −Q

If g(R,Q) is positive, the limit state is met. For simplicity, 
normal probability distributions are assumed, and β values are 
computed as follows.

Strength I = R Q

R
2 + Q

2
= 1715 259 56 664

137.22 + 25.92 +14.02 +132.82
= 3.81β

σ σ

Figure 2 illustrates the normal distributions for the load, 
resistance, and limit state function. β is the number of standard 
deviations the average of the limit state function is away from 
“failure,” in this case, 3.81 times. The shaded area is the 
probability of not meeting the limit state, in this case, about 
0.06 × 10−3.

The Service I limit state addresses crack control in the AASHTO 
LRFD specifications Article 5.6.7, where steel stress is limited to 
0.6fy, which is used here to represent Service I.

Service I = R Q

R
2 + Q

2

= 0.6(60)(1.14) 10.3(1.05) 2.33(1.0) 23.0(1.2)

3.282 +1.082 + 0.582 + 5.522

≈ 0

σ σ
β

Another possible limit state of interest is the yield limit, 
or a fraction of yield to be used for rating. Using similar 
computations as shown for Strength I and Service I, and 
assuming fy is the resistance with service load effects, β is 
3.56 for the yield limit. Note that βYield is similar to βStrength I, as  

Figure 2. Normal distributions of load, resistance, and limit state functions.

Table 3. Statistical properties of primary variables used in this example

Bias λ Coefficient 
of variation V

Resistance factor 
or load factor 

Flexural resistance R * 1.14 0.08 ϕ = 0.9 (Strength I)

Component 
self-weight DC† 1.05 0.10

γDC = 1.25 (Strength I)
γDC = 1.00 (Service I)

Wearing surface 
dead load DW‡ 1.0 0.25

γDW = 1.25 (Strength I)
γDw = 1.25 (Service I)

Live load LL § 1.2 0.1 to 0.20
γLL = 1.75 (Strength I)
γLL = 1.00 (Service I)

*Mostly dependent on fy statistics.
†Cast-in-place concrete self-weight.
‡Wearing surface (asphalt).
§Dynamic load effect, live-load distribution, and weights/spacings are combined into one 
parameter here.
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expected, because the moment capacities are approximately 
the same.

Cracking is not a formal limit state and is provided for insight 
into the bridge’s expected behavior during the 75-year service 
life. Using the same method again and assuming λ = 1.1 and 
VR = 0.1 for Mcr, βCracking is –5.6; that is, cracking is expected, 
which is an obvious result because even self-weight loads 
exceed any estimate of the cracking moment.

Parametric Study
Designs were performed for T-beam bridges with varied spacings 
S = 6, 8, 10, and 12 ft; span lengths Lspan = 35, 40, 45, and 50 
ft; and girder depths h = 0.07 × Lspan (rounded up) = 30, 34, 
38, and, for a deeper case, 50 in. The design was optimized 
for each case; that is, the performance ratio for Strength I 
was set to unity. The β values were almost uniform, with a 
minimum of 3.74 and a maximum of 3.96. This indicates that 
the calibration is meeting its aim (load and resistance factors 
are providing uniform reliability) for this class of bridge type 
for typical geometry and material properties. Further study 
regarding live-load (platoons) statistical parameters can be 
readily conducted with a typical structure, as β computations are 
insensitive to Lspan and S.

Platoon Example
Assume that a platoon operator can measure and report axle 
weights and spacings while operating. Consequently, the 
platoon live-load bias and variance can be lower than assumed 
for routine operations. Table 4 provides β values for a range 
of assumed bias and variance values. Note that because the 
live load is a function of transverse load distribution, dynamic 
load allowance, and weight characteristics, λ and VLL cannot be 
driven to 1 and 0, respectively. The case where λ = 1.1 with VLL

between 0 and 0.1 is a realistic range with β values of 5.2 and 
5.6, respectively. Other values provide bounds.

Because β values increase with lower bias and variance, the 
opportunity exists to increase platoon live loads to move to a 
typical design target of β = 3.5, or to a typical operating target 
of β = 2.5.4

Table 5 provides the available increase in live load to maintain 
β = 3.5. Again, the practical ranges of bias and variance 
correspond to live-load increases of 30% to 45%.

In AASHTO load rating, the operating level for load rating 
targets β = 2.5. Table 6 provides factors for increasing live 
load to maintain β = 2.5. Again, note the highlighted values.

Discussion 
The example and associated computations for a single bridge 
type and geometry demonstrate the potential to offer a new 
permit-use case, a platoon permit. The load increases would 
depend on the operators’ ability to invest in technologies 
to drive the λ and VLL downward in a consistent and likely, 
reportable manner. 

To summarize, when the Q  and σQ are driven downward 
with better technology to Qplatoon and σQ_platoon, these changes 
increase β. Therefore, the nominal platoon live load could 
be increased to maintain a constant β = 3.85, or to target a 
design β = 3.5 or an operating β = 2.5, as desired for various 
operational strategies.

StrengthI =
R Qplatoon

R
2 + Q _ platoon

2
β

σ σ

The β values for the yield limit computed for the various 
geometries varies a little around β = 3.5. This assumes the full 
yield capacity of the reinforcing steel. If the steel stress is limited 
to 0.6fy, for the example bridge, β is approximately zero for the 
75-year design life, indicating a 50% chance of exceedance.

Next Article
This example and discussion provide a relatively simple 
bridge system to demonstrate reliability computations for a 
conventionally reinforced concrete bridge. A forthcoming 
article aims to unpack some of the complexities associated 
with pretensioned concrete bridge girders and evaluation for 
platoon operations. For a pretensioned concrete girder, the 
design (number of strands, prestress, and eccentricity) is more 
complex, involving different loss methods, different live-load 
factors, gross or transformed section properties, allowable 
tension, and design specifications that have changed over time 
(and are still changing). 
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Table 4. Reliability index β with various live-load statistics

Strength I
Live load bias λ

1.2 1.1 1.0

Live load coefficient 
of variation VLL

0.2 3.8 4.3 4.8

0.1 4.8 5.2 5.6

0 5.3 5.6 6.0

Table 5. Potential factor to apply to live load to maintain β = 3.5 (inventory)

Strength I
Live load bias λ

1.2 1.1 1.0

Live load coefficient 
of variation VLL

0.2 1.00 1.10 1.20

0.1 1.20 1.30 1.40

0 1.30 1.45 1.60

Table 6. Potential factor to apply to live load to maintain β = 2.5 (operating)

Strength I
Live load bias λ

1.2 1.1 1.0

Live load coefficient 
of variation VLL

0.2 1.30 1.40 1.55

0.1 1.45 1.60 1.75

0 1.60 1.70 1.90


