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Concrete Segmental Bridges—
Preliminary Design Approximations for Creep 
Redistribution, Post-Tensioning Secondary 
Moments, and Thermal-Gradient Stresses

This article, which is the third in a 
series discussing preliminary design 
approximations for concrete segmental 
bridges, covers methods to estimate creep 
redistribution, post-tensioning secondary 
moments, and thermal-gradient stresses. 
For most loads, such as superimposed 
dead loads and live loads, moment 
demand can be determined through the 
use of a simple finite element model 
with a limited number of nodes and 
elements, and no consideration of time-
dependent effects. Before the introduction 
of desktop computers, beam charts 
were used for this purpose. However, 
determining the moments and stresses 
covered in this article is a more time-
consuming process that requires more-
precise modeling; therefore, simplified 
methods and approximations are helpful 
for preliminary designs.

For instance, the determination of 
the moment demands from creep and 
shrinkage requires a complex time-
dependent—and time-consuming—model, 
which is typically developed in final 
design. Therefore, a simplified method for 
determining redistribution moments is 
desirable for preliminary design. Post-
tensioning secondary moments are 
typically treated as a demand and are 
dependent on the number, size, and profile 
of the selected tendons in the bridge. 
Secondary moments can be calculated 
with a finite element model that includes 
the modeling of post-tensioning tendons 
in final design. However, a simple and 
noniterative method for determining 
secondary moments is desirable for 
preliminary design. Similarly, the 
computation of stresses due to nonlinear 
thermal gradients is time-consuming, and 
a simple approximate calculation method 
is desirable for preliminary design.

Creep Redistribution
When a superstructure is erected in a 
static scheme different from the final 
static scheme of the bridge, the forces 
in the superstructure will tend to 
redistribute due to creep. To help 
understand the redistribution effect, 
consider the structure constructed 
using the balanced-cantilever method 
shown in Fig. 1. After the cantilevers 
are erected, there are large negative 
moments over the piers and no positive 
moments at midspan due to the self-
weight of the cross section. As shown in 
Fig. 1, cantilever stresses have higher 
levels of compression in the bottom fiber 
than in the top fiber. Therefore, creep of 
the concrete will cause the cantilever 
to deflect downward over time. If the 
cantilever is free, there is a corresponding 
rotation at its tip. However, if continuity 
has been established between cantilevers, 
the rotation of the ends of the cantilevers 

is restrained. As seen in Fig. 1, the 
moments that develop because of this 
restraint are positive. Therefore, for this 
balanced-cantilever example, positive 
moments develop at midspan and the 
negative moments over the piers are 
reduced. The net effect is a redistribution 
of the self-weight moments, with the 
moment diagram shifting downward 
(Fig. 2). 

In general, for any structure, there is a 
self-weight moment diagram (and 
corresponding set of coincident forces 
for every degree of freedom) that occurs 
at the end of construction. Historically, 
this moment diagram has been termed 
the S

1
 state. This S

1
 moment diagram is 

dependent on the geometry and properties 
of the structure (span length, cross-
sectional properties, self-weight, and so 
on), as well as the sequence and methods 
used to construct the structure. 

Figure 1. Mechanism for creep 
redistribution effects. All Figures: 
R. Kent Montgomery.
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A different self-weight moment diagram 
would apply if the structure were 
analyzed as continuous for self-weight 
loading (as if the entire structure 
were built on falsework). This moment 
diagram is termed the continuous state 
or, historically, the S

2
 state. As a general 

rule, concrete creep will cause the 
moment diagram to shift from the S

1

state toward the S
2
 state as follows:

M
LT

= M
1

+ M
CR

where
M

LT
= long-term moment

M
CR

= (1 − e–ψ) (M
2

− M
1
) = creep 

redistribution moment
M

1
= S

1
 state moment

M
2

= S
2
 state moment

ψ = creep coefficient

Typically, the moment diagram never 
fully reaches the S

2
 state but is instead 

somewhere between the S
1
 and S

2
 states. 

For preliminary design, it is reasonable to 
make the following assumptions:

• (1  −  e –ψ)  =  0 .0  fo r  c r eep 
redistribution moments at the end of 
construction

• (1 − e–ψ) = 0.5 to 0.7 for long-term 
creep redistribution moments 

Figure 2 illustrates the use of this 
concept.

Note that although reference has been 
made to self-weight moments in the 
discussion about redistribution, the 
amount of post-tensioning and the point 
in time when a member is tensioned 
influence the amount of redistribution 
that occurs. For example, if additional 
cantilever post-tensioning is used, 
the compressive stress diagram in the 
cantilever becomes more uniform 
between the top and bottom fibers. 

Therefore, creep will produce more axial 
contraction but less downward deflection. 
As discussed earlier, it is the downward 
deflection that leads to the redistribution 
effect; therefore, adding cantilever post-
tensioning reduces the amount of creep 
redistribution for the example shown 
in Fig. 2. However, the assumptions 
made earlier are usually adequate for 
preliminary design.

Other load effects, including barriers, 
wearing  sur face, live  load , and 
temperature effects (uniform temperature 
and temperature gradient) are typically 
analyzed for the continuous structure and, 
as such, are not subject to the same time-
dependent considerations.

Secondary Moments
Post-tensioning secondary moments arise 
in statically indeterminate structures due 
to restrained deformations from the post-
tensioning. The secondary moments most 
relevant to this discussion are caused 
by restrained rotations. For example, a 
simple-span bridge is free to rotate at 
the ends of the span due to the primary 
post-tensioning forces. However, if the 
bridge is continuous, the ends of the span 
are not free to rotate unrestrainedly, 
and secondary post-tensioning moments 
develop. Note that primary post-
tensioning forces are those applied by the 
prestressing without any restraints:

P
p

= P
pt

M
p

= P
pt

× e

where 
P

p
= primary post-tensioning axial 

force
P

pt
= applied post-tensioning axial force

M
p

= primary post-tensioning moment
e = tendon eccentricity

Forces developed due to restraint 
reactions are termed secondary forces. 
For calculation of stresses, the sum 
of these forces should be used. For 
the strength limit state, the secondary 
moments are treated as demands and 
the prestressing itself is used in capacity 
calculations. 

The secondary moments for any tendon 
are dependent on the tendon length, 
profile, and position in the bridge. 
Therefore, analysis programs are the best 
option to exactly calculate secondary 
moments. However, the process of defining 
tendons in such a program to arrive at a 
post-tensioning layout would be iterative 
and time-consuming. The assumptions 
presented herein allow for simple, quick 
calculations with enough accuracy for 
preliminary design.

An important concept, without getting 
into detailed calculations, is that 
secondary moments are proportional 
to free-end rotations (rotations without 
restraints). Free-end rotations are then 
proportional to the area above or below 
the neutral axis for the primary moment 
diagram along the span (classic moment-
area theorem). Experience has shown 
that some simple assumptions about the 
magnitude of secondary moments as 
a percentage of primary moments are 
sufficiently accurate for determining a 
preliminary post-tensioning layout to 
advance to final design. 

For typical concrete segmental bridges 
constructed by the span-by-span method, it 
is reasonable to assume that the secondary 
moments in interior spans are 50% of 
the positive primary moment from all 
tendons. In other words, for each interior 
span, the secondary moment in the span is 

Figure 2. Creep redistribution in a concrete segmental bridge constructed using the balanced-cantilever method.
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positive and equal to 50% of the maximum 
primary moment from all tendons. This 
assumption holds true when the span 
lengths in a unit are roughly equal (±20%) 
and the post-tensioning layout consists 
primarily of draped tendons anchoring in 
the pier or expansion diaphragms at the 
ends of each span and deviating in the span 
as shown in Fig. 3. The secondary moment 
diagram can be assumed to be constant 
across interior spans and decrease to zero 
at the free end of the unit (across the end 
spans). Therefore, the secondary moments 
at critical locations in an end span are less 
than the secondary moments in interior 
spans and can be determined by linear 
interpolation.

Note that the locations of the deviation 
diaphragms influence the magnitude 
of the secondary moments. Figure 3 
shows that the closer the deviation 
diaphragms are to the pier diaphragms 
(that is, the further apart the deviation 
diaphragms are), the greater the area 
of the primary moment diagram below 
the neutral axis and, hence, the greater 
the secondary moments will be. However, 
the deviation diaphragms must be far 
enough apart such that the straight run 
of the tendons in the lowest position 
between deviation diaphragms captures 
the moment diagrams for load demands, 
including the effects of creep. (Note that 
creep redistribution is small for span-
by-span bridges.) Spacing the deviation 
diaphragms approximately one-quarter of 
the span length apart is typically optimal 
(Fig. 3). Spacing them further apart 
increases the magnitude of the secondary 
moments and, therefore, decreases the 
efficiency of the tendons. Spacing them 
closer together does not capture the load-
demand diagram as described previously. 
For interior spans, locating the deviation 
diaphragms so that they are centered 
in the span is usually optimal. For end 
spans, locating the deviation diaphragms 
so that they are centered on a location 
40% of the span length from the end of 
the unit is usually optimal.

For constant-depth balanced-cantilever 
bridges, it is reasonable to assume that 
the secondary moments are 50% of 
the positive primary moment from all 
continuity tendons. (For each span, the 
secondary moment in the span is positive 
and 50% of the maximum primary 
moment from all continuity tendons.) This 
assumption applies to both bottom slab 

and draped span-by-span-style continuity 
tendons. Note that the bottom-slab 
tendons are not draped, and the primary 
moment diagram is a straight line 
at the maximum eccentricity. The area 
under the primary moment diagram is 
smaller for shorter bottom slab tendons, 
resulting in smaller secondary moments, 
and the area under the primary moment 
diagram is larger for longer bottom slab 
tendons, resulting in larger secondary 
moments (Fig. 4). The assumption that 
the secondary moments are 50% of 
the primary moments for bottom slab 
tendons is based on the average for all 
tendons. The secondary moment diagram 
can be assumed to be constant across 
interior spans and decrease to zero at 
the end of the unit across end spans. The 

same considerations for span-by-span 
bridges apply to locating the deviation 
diaphragms for draped tendons. 

For variable-depth balanced-cantilever 
bridges, the location of the neutral axis 
is not a straight line across the span but 
instead follows a profile similar to the 
intrados profile (Fig. 5). The bottom 
slab tendon profile follows a profile just 
below the upper surface of the bottom 
slab, and it reasonable to assume that 
the secondary moment for these bottom 
slab tendons is positive and is 50% of the 
primary moment. Due to the profile of the 
neutral axis, the area under the neutral 
axis is smaller for draped tendons and 
is partially offset by the area above the 
neutral axis. Therefore, draped tendons 

Figure 3. Draped post-tensioning tendon layout for a concrete segmental bridge constructed using the 
span-by-span method.

Figure 4. Continuity post-tensioning tendon layout for a constant-depth concrete segmental bridge 
constructed using the balanced-cantilever method.
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computational burden. In concrete 
segmental bridges the stresses due to 
temperature gradients are much smaller 
than those from permanent loads and live 
loads; therefore, very simple assumptions 
yield adequate results.

First, the negative temperature gradient 
can be ignored for preliminary design. 
Negative temperature gradients typically 
only govern where the live-load stresses in 
the top slab are small (for example, near 
the free end of end spans), and refining 
the final design is relatively simple for 
these special regions.

For the positive temperature gradient, 
experience has shown that the following 
equivalent moment can be used for 
preliminary design:

M
tg

= (ΔT × E × I × α)/h

where
M

tg
= equivalent moment for calculating 

stresses from a positive 
temperature gradient

ΔT = 15°F approximate temperature 
gradient for preliminary design 

E = concrete modulus of elasticity
I = cross section moment of inertia 
α = concrete coefficient of thermal 

expansion
h = overall depth of cross section

This thermal gradient moment is 
positive and roughly equivalent to the 
restraint moment that develops from 

a linear temperature gradient. The 
gradient of 15°F is a little less than the 
historically used 18°F linear gradient 
to account for the helpful bottom fiber 
compressive internal stresses from a 
positive nonlinear gradient. The full M

tg

can be applied for interior spans, and the 
moment can be assumed to decrease to 
zero at the free end of the unit (across 
the end spans). For variable-depth 
spans, I and h can be taken at a section 
approximately 20% of the span length 
from the midspan.

Conclusion
The simplifications presented in this 
article can be used to calculate the 
amount of post-tensioning for concrete 
segmental bridges constructed by the 
span-by-span method and the amount of 
continuity post-tensioning for balanced-
cantilever bridges. Methods to determine 
the amount of cantilever post-tensioning 
for balanced-cantilever bridges and the 
cross-sectional dimensions were discussed 
in previous articles in ASPIRE®. The 
remaining task for preliminary design is 
to lay out the individual post-tensioning 
tendons. This topic will be discussed in the 
next article in this series.
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are more efficient for variable-depth 
bridges than for constant-depth bridges, 
and it is reasonable to assume that the 
secondary moment for these draped 
tendons is positive and is 25% of the 
primary moment. The total secondary 
moment in the span is the sum of the 
secondary moments from the bottom 
slab and draped tendons. The secondary 
moment diagram can be assumed to be 
constant across all interior spans and 
to decrease to zero at the free end of 
the unit (across the end spans). The 
same considerations for span-by-span 
bridges apply to locating the deviation 
diaphragms for draped tendons. 

For preliminary design, the number of 
required tendons can be estimated based 
on keeping stresses within the limiting 
stresses for the service limit state. 
Typically, end spans with external tendons 
represent the only situation in which 
the service limit state does not govern 
the amount of post-tensioning. A quick 
calculation of the moment capacity can 
determine whether the amount of post-
tensioning in these spans needs to be 
increased. 

For calculational purposes, the concept 
of tendon efficiency can be used to 
estimate the amount of post-tensioning. 
For example, for a tendon where the 
amount of secondary moment is 25% 
of the primary moment, the tendon is 
75% efficient and the total stresses due 
to the post-tensioning can be calculated 
from the full axial force and 75% of the 
primary moment.

Temperature Gradient 
Stresses
Historically, a 10°C (18°F) positive 
linear  temperature  gradient  was 
applied for design—with a positive 
gradient  indicat ing that  the top 
fiber is warmer than the bottom fiber. 
After 1989 and with the introduction 
of the American Association of State 
Highway and Transportation Officials’ 
Guide Specifications for Design and 
Construction of Segmental Concrete 
Bridges , 1 non linear  temperature 
gradients were specified, including 
a negative gradient. An accurate 
computation of s tresses due to a 
non linear  t empera tu re  gradi en t 
requires involved calculations; however, 
for preliminary design, simplifying 
assumptions can be made to ease the 

Figure 5. Continuity post-tensioning tendon layout for a variable-depth concrete segmental bridge 
constructed using the balanced-cantilever method.




